
SQL BASICS AND
ADVANCED

INTRODUCTION

SQL is a standard language for accessing databases.

how to use SQL to access and manipulate data in:

MySQL, SQL Server, Access, Oracle, Sybase, DB2, and other database systems.

SQL Syntax:

SELECT Company, Country FROM Customers WHERE Country <> 'USA'

SQL Result:

Company Country

Island Trading UK
Galería del gastrónomo Spain
Laughing Bacchus Wine Cellars Canada
Paris spécialités France
Simons bistro Denmark
Wolski Zajazd Poland

SQL is a “standard language for accessing and manipulating databases”.

What is SQL?

 SQL stands for Structured Query Language
 SQL lets you access and manipulate databases
 SQL is an ANSI (American National Standards Institute) standard

What Can SQL do?

 SQL can execute queries against a database
 SQL can retrieve data from a database
 SQL can insert records in a database
 SQL can update records in a database
 SQL can delete records from a database
 SQL can create new databases
 SQL can create new tables in a database
 SQL can create stored procedures in a database
 SQL can create views in a database
 SQL can set permissions on tables, procedures, and views

2

RDBMS

 RDBMS stands for Relational Database Management System.
 RDBMS is the basis for SQL, and for all modern database systems like MS SQL Server, IBM

DB2, Oracle, MySQL, and Microsoft Access.
 The data in RDBMS is stored in database objects called tables.
 A table is a collections of related data entries and it consists of columns and rows.

SQL BASICS

Database Tables

A database most often contains one or more tables. Each table is identified by a name (e.g. "Customers"
or "Orders"). Tables contain records (rows) with data.
Below is an example of a table called "Persons":

P_Id LastName FirstName Address City

1 Hansen Ola Timoteivn 10 Sandnes

2 Svendson Tove Borgvn 23 Sandnes

3 Pettersen Kari Storgt 20 Stavanger

The table above contains three records (one for each person) and five columns (P_Id, LastName,
FirstName, Address, and City).

SQL Statements

Most of the actions you need to perform on a database are done with SQL statements.
The following SQL statement will select all the records in the "Persons" table:

SELECT * FROM Persons

Note:

 SQL is not case sensitive
 Semicolon after SQL Statements?
 Some database systems require a semicolon at the end of each SQL statement.
 Semicolon is the standard way to separate each SQL statement in database systems that allow

more than one SQL statement to be executed in the same call to the server.
 We are using MS Access and SQL Server 2000 and we do not have to put a semicolon after each

SQL statement, but some database programs force you to use it.

3

SQL DML and DDL

SQL can be divided into two parts: The Data Manipulation Language (DML) and the Data Definition
Language (DDL).

The query and update commands form the DML part of SQL:
SELECT - extracts data from a database
UPDATE - updates data in a database
DELETE - deletes data from a database
INSERT INTO - inserts new data into a database

The DDL part of SQL permits database tables to be created or deleted. It also define indexes (keys),
specify links between tables, and impose constraints between tables. The most important DDL statements
in SQL are:

CREATE DATABASE - creates a new database
ALTER DATABASE - modifies a database
CREATE TABLE - creates a new table
ALTER TABLE - modifies a table
DROP TABLE - deletes a table
CREATE INDEX - creates an index (search key)
DROP INDEX - deletes an index

The SQL SELECT Statement

 The SELECT statement is used to select data from a database.
 The result is stored in a result table, called the result-set.

 SQL SELECT Syntax

SELECT column_name(s)
FROM table_name
And
SELECT * FROM table_name

Note: SQL is not case sensitive. SELECT is the same as select.

An SQL SELECT Example

The "Persons" table:

4

P_Id LastName FirstName Address City

1 Hansen Ola Timoteivn 10 Sandnes

2 Svendson Tove Borgvn 23 Sandnes

3 Pettersen Kari Storgt 20 Stavanger

Now we want to select the content of the columns named "LastName" and "FirstName" from the table
above.

We use the following SELECT statement:

SELECT LastName,FirstName FROM Persons

The result-set will look like this:

LastName FirstName

Hansen Ola

Svendson Tove

Pettersen Kari

SELECT * Example

Now we want to select all the columns from the "Persons" table.
We use the following SELECT statement:

SELECT * From Persons

The SQL SELECT DISTINCT Statement

 In a table, some of the columns may contain duplicate values. This is not a problem, however,
sometimes you will want to list only the different (distinct) values in a table.

 The DISTINCT keyword can be used to return only distinct (different) values.

 SQL SELECT DISTINCT Syntax

SELECT DISTINCT column_name(s)
FROM table_name

SELECT DISTINCT Example

The "Persons" table:

P_Id LastName FirstName Address City

1 Hansen Ola Timoteivn 10 Sandnes

5

2 Svendson Tove Borgvn 23 Sandnes

3 Pettersen Kari Storgt 20 Stavanger

Now we want to select only the distinct values from the column named "City" from the table above.
We use the following SELECT statement:

SELECT DISTINCT City FROM Persons

The result-set will look like this:

City

Sandnes

Stavanger

The WHERE Clause

 The WHERE clause is used to filter records.
 The WHERE clause is used to extract only those records that fulfill a specified criterion.
 SQL WHERE Syntax

SELECT column_name(s)
FROM table_name
WHERE column_name operator value

WHERE Clause Example

The "Persons" table:

P_Id LastName FirstName Address City

1 Hansen Ola Timoteivn 10 Sandnes

2 Svendson Tove Borgvn 23 Sandnes

3 Pettersen Kari Storgt 20 Stavanger

Now we want to select only the persons living in the city "Sandnes" from the table above.
We use the following SELECT statement:

SELECT * FROM Persons
WHERE City='Sandnes'

6

The result-set will look like this:

P_Id LastName FirstName Address City

1 Hansen Ola Timoteivn 10 Sandnes

2 Svendson Tove Borgvn 23 Sandnes

Quotes Around Text Fields

SQL uses single quotes around text values (most database systems will also accept double quotes).
Although, numeric values should not be enclosed in quotes.

For text values:

This is correct:
SELECT * FROM Persons WHERE FirstName='Tove'

This is wrong:
SELECT * FROM Persons WHERE FirstName=Tove

For numeric values:

This is correct:
SELECT * FROM Persons WHERE Year=1965

This is wrong:
SELECT * FROM Persons WHERE Year='1965'

Operators Allowed in the WHERE Clause

With the WHERE clause, the following operators can be used:

Operator Description

= Equal

<> Not equal

> Greater than

< Less than

>= Greater than or equal

<= Less than or equal

BETWEEN Between an inclusive range

LIKE Search for a pattern

IN If you know the exact value you want to return for at least one of the columns

Note: In some versions of SQL the <> operator may be written as !=

7

The AND & OR Operators

 The AND & OR operators are used to filter records based on more than one condition.
 The AND operator displays a record if both the first condition and the second condition is true.
 The OR operator displays a record if either the first condition or the second condition is true.

AND Operator Example

The "Persons" table:

P_Id LastName FirstName Address City

1 Hansen Ola Timoteivn 10 Sandnes

2 Svendson Tove Borgvn 23 Sandnes

3 Pettersen Kari Storgt 20 Stavanger

Now we want to select only the persons with the first name equal to "Tove" AND the last name equal to
"Svendson":

We use the following SELECT statement:

SELECT * FROM Persons
WHERE FirstName='Tove'AND LastName='Svendson'

The result-set will look like this:

P_Id LastName FirstName Address City

2 Svendson Tove Borgvn 23 Sandnes

OR Operator Example

Now we want to select only the persons with the first name equal to "Tove" OR the first name equal to
"Ola":

We use the following SELECT statement:

SELECT * FROM Persons
WHERE FirstName='Tove' OR FirstName='Ola'

The result-set will look like this:

P_Id LastName FirstName Address City

1 Hansen Ola Timoteivn 10 Sandnes

8

2 Svendson Tove Borgvn 23 Sandnes

Combining AND & OR

You can also combine AND and OR (use parenthesis to form complex expressions).

Now we want to select only the persons with the last name equal to "Svendson" AND the first name equal
to "Tove" OR to "Ola":

We use the following SELECT statement:

SELECT * FROM Persons
WHERE LastName='Svendson' AND (FirstName='Tove' OR FirstName='Ola')

The result-set will look like this:

P_Id LastName FirstName Address City

2 Svendson Tove Borgvn 23 Sandnes

The ORDER BY Keyword

 The ORDER BY keyword is used to sort the result-set.
 The ORDER BY keyword is used to sort the result-set by a specified column.
 The ORDER BY keyword sort the records in ascending order by default.
 If you want to sort the records in a descending order, you can use the DESC keyword.
 SQL ORDER BY Syntax

SELECT column_name(s)
FROM table_name ORDER BY column_name(s) ASC|DESC

ORDER BY Example

The "Persons" table:

P_Id LastName FirstName Address City

1 Hansen Ola Timoteivn 10 Sandnes

2 Svendson Tove Borgvn 23 Sandnes

3 Pettersen Kari Storgt 20 Stavanger

4 Nilsen Tom Vingvn 23 Stavanger

Now we want to select all the persons from the table above, however, we want to sort the persons by their
last name.

We use the following SELECT statement:

SELECT * FROM Persons ORDER BY LastName

9

The result-set will look like this:

P_Id LastName FirstName Address City

1 Hansen Ola Timoteivn 10 Sandnes

4 Nilsen Tom Vingvn 23 Stavanger

3 Pettersen Kari Storgt 20 Stavanger

2 Svendson Tove Borgvn 23 Sandnes

ORDER BY DESC Example

Now we want to select all the persons from the table above, however, we want to sort the persons
descending by their last name.

We use the following SELECT statement:

SELECT * FROM Persons ORDER BY LastName DESC

The result-set will look like this:

P_Id LastName FirstName Address City

2 Svendson Tove Borgvn 23 Sandnes

3 Pettersen Kari Storgt 20 Stavanger

4 Nilsen Tom Vingvn 23 Stavanger

1 Hansen Ola Timoteivn 10 Sandnes

The INSERT INTO Statement

 The INSERT INTO statement is used to insert new records in a table.
 The INSERT INTO statement is used to insert a new row in a table.
 SQL INSERT INTO Syntax

 It is possible to write the INSERT INTO statement in two forms.
 The first form doesn't specify the column names where the data will be inserted, only their values:

INSERT INTO table_name VALUES (value1, value2, value3,...)

 The second form specifies both the column names and the values to be inserted:

INSERT INTO table_name (column1, column2, column3,...) VALUES (value1, value2,
value3,...)

10

SQL INSERT INTO Example

We have the following "Persons" table:

P_Id LastName FirstName Address City

1 Hansen Ola Timoteivn 10 Sandnes

2 Svendson Tove Borgvn 23 Sandnes

3 Pettersen Kari Storgt 20 Stavanger

Now we want to insert a new row in the "Persons" table.

We use the following SQL statement:

INSERT INTO Persons VALUES (4,'Nilsen', 'Johan', 'Bakken 2', 'Stavanger')

The "Persons" table will now look like this:

P_Id LastName FirstName Address City

1 Hansen Ola Timoteivn 10 Sandnes

2 Svendson Tove Borgvn 23 Sandnes

3 Pettersen Kari Storgt 20 Stavanger

4 Nilsen Johan Bakken 2 Stavanger

Insert Data Only in Specified Columns

It is also possible to only add data in specific columns.

The following SQL statement will add a new row, but only add data in the "P_Id", "LastName" and the
"FirstName" columns:

INSERT INTO Persons (P_Id, LastName, FirstName) VALUES (5, 'Tjessem', 'Jakob')

The "Persons" table will now look like this:

P_Id LastName FirstName Address City

1 Hansen Ola Timoteivn 10 Sandnes

2 Svendson Tove Borgvn 23 Sandnes

3 Pettersen Kari Storgt 20 Stavanger

4 Nilsen Johan Bakken 2 Stavanger

5 Tjessem Jakob

The UPDATE Statement

11

 The UPDATE statement is used to update records in a table.
 The UPDATE statement is used to update existing records in a table.
 SQL UPDATE Syntax

UPDATE table_name
SET column1=value, column2=value2,...
WHERE some_column=some_value

Note: Notice the WHERE clause in the UPDATE syntax. The WHERE clause specifies which record or
records that should be updated. If you omit the WHERE clause, all records will be updated!

SQL UPDATE Example

The "Persons" table:

P_Id LastName FirstName Address City

1 Hansen Ola Timoteivn 10 Sandnes

2 Svendson Tove Borgvn 23 Sandnes

3 Pettersen Kari Storgt 20 Stavanger

4 Nilsen Johan Bakken 2 Stavanger

5 Tjessem Jakob

Now we want to update the person "Tjessem, Jakob" in the "Persons" table.

We use the following SQL statement:

UPDATE Persons
SET Address='Nissestien 67', City='Sandnes'
WHERE LastName='Tjessem' AND FirstName='Jakob'

The "Persons" table will now look like this:

P_Id LastName FirstName Address City

1 Hansen Ola Timoteivn 10 Sandnes

2 Svendson Tove Borgvn 23 Sandnes

3 Pettersen Kari Storgt 20 Stavanger

4 Nilsen Johan Bakken 2 Stavanger

5 Tjessem Jakob Nissestien 67 Sandnes

SQL UPDATE Warning

12

Be careful when updating records. If we had omitted the WHERE clause in the example above, like this:

UPDATE Persons
SET Address='Nissestien 67', City='Sandnes'

The "Persons" table would have looked like this:

P_Id LastName FirstName Address City

1 Hansen Ola Nissestien 67 Sandnes

2 Svendson Tove Nissestien 67 Sandnes

3 Pettersen Kari Nissestien 67 Sandnes

4 Nilsen Johan Nissestien 67 Sandnes

5 Tjessem Jakob Nissestien 67 Sandnes

The DELETE Statement

 The DELETE statement is used to delete records in a table.
 The DELETE statement is used to delete rows in a table.
 SQL DELETE Syntax

DELETE FROM table_name
WHERE some_column=some_value

Note: Notice the WHERE clause in the DELETE syntax. The WHERE clause specifies which record or
records that should be deleted. If you omit the WHERE clause, all records will be deleted!

SQL DELETE Example

The "Persons" table:

P_Id LastName FirstName Address City

1 Hansen Ola Timoteivn 10 Sandnes

2 Svendson Tove Borgvn 23 Sandnes

3 Pettersen Kari Storgt 20 Stavanger

4 Nilsen Johan Bakken 2 Stavanger

5 Tjessem Jakob Nissestien 67 Sandnes

Now we want to delete the person "Tjessem, Jakob" in the "Persons" table.

We use the following SQL statement:

13

DELETE FROM Persons
WHERE LastName='Tjessem' AND FirstName='Jakob'

The "Persons" table will now look like this:

P_Id LastName FirstName Address City

1 Hansen Ola Timoteivn 10 Sandnes

2 Svendson Tove Borgvn 23 Sandnes

3 Pettersen Kari Storgt 20 Stavanger

4 Nilsen Johan Bakken 2 Stavanger

Delete All Rows

It is possible to delete all rows in a table without deleting the table. This means that the table structure,
attributes, and indexes will be intact:

DELETE FROM table_name

or

DELETE * FROM table_name

SQL ADVANCE

The TOP Clause

 The TOP clause is used to specify the number of records to return.
 The TOP clause can be very useful on large tables with thousands of records. Returning a large

number of records can impact on performance.

Note: Not all database systems support the TOP clause.

 SQL Server Syntax:

SELECT TOP number|percent column_name(s)
FROM table_name

 SQL SELECT TOP Equivalent in MySQL and Oracle:

 MySQL Syntax:

SELECT column_name(s)
FROM table_name
LIMIT number

14

Example:
SELECT *
FROM Persons
LIMIT 5

 Oracle Syntax

SELECT column_name(s)
FROM table_name
WHERE ROWNUM <= number

Example
SELECT *
FROM Persons
WHERE ROWNUM <=5

SQL TOP Example

The "Persons" table:

P_Id LastName FirstName Address City

1 Hansen Ola Timoteivn 10 Sandnes

2 Svendson Tove Borgvn 23 Sandnes

3 Pettersen Kari Storgt 20 Stavanger

4 Nilsen Tom Vingvn 23 Stavanger

Now we want to select only the two first records in the table above.

We use the following SELECT statement:

SELECT TOP 2 * FROM Persons

The result-set will look like this:

P_Id LastName FirstName Address City

15

1 Hansen Ola Timoteivn 10 Sandnes

2 Svendson Tove Borgvn 23 Sandnes

SQL TOP PERCENT Example

The "Persons" table:

P_Id LastName FirstName Address City

1 Hansen Ola Timoteivn 10 Sandnes

2 Svendson Tove Borgvn 23 Sandnes

3 Pettersen Kari Storgt 20 Stavanger

4 Nilsen Tom Vingvn 23 Stavanger

Now we want to select only 50% of the records in the table above.

We use the following SELECT statement:

SELECT TOP 50 PERCENT * FROM Persons

The result-set will look like this:

P_Id LastName FirstName Address City

1 Hansen Ola Timoteivn 10 Sandnes

2 Svendson Tove Borgvn 23 Sandnes

SQL Wildcards

 SQL wildcards can be used when searching for data in a database.
 SQL wildcards can substitute for one or more characters when searching for data in a database.

16

 SQL wildcards must be used with the SQL LIKE operator.
 With SQL, the following wildcards can be used:

Wildcard Description

% A substitute for zero or more characters

_ A substitute for exactly one character

[charlist] Any single character in charlist

[^charlist]

or

[!charlist]

Any single character not in charlist

SQL Wildcard Examples

We have the following "Persons" table:

P_Id LastName FirstName Address City

1 Hansen Ola Timoteivn 10 Sandnes

2 Svendson Tove Borgvn 23 Sandnes

3 Pettersen Kari Storgt 20 Stavanger

Using the % Wildcard

Now we want to select the persons living in a city that starts with "sa" from the "Persons" table.

We use the following SELECT statement:

SELECT * FROM Persons
WHERE City LIKE 'sa%'

The result-set will look like this:

P_Id LastName FirstName Address City

1 Hansen Ola Timoteivn 10 Sandnes

2 Svendson Tove Borgvn 23 Sandnes

Next, we want to select the persons living in a city that contains the pattern "nes" from the "Persons"
table.

We use the following SELECT statement:

17

SELECT * FROM Persons
WHERE City LIKE '%nes%'

The result-set will look like this:

P_Id LastName FirstName Address City

1 Hansen Ola Timoteivn 10 Sandnes

2 Svendson Tove Borgvn 23 Sandnes

Using the _ Wildcard

Now we want to select the persons with a first name that starts with any character, followed by "la" from
the "Persons" table.

We use the following SELECT statement:

SELECT * FROM Persons
WHERE FirstName LIKE '_la'

The result-set will look like this:

P_Id LastName FirstName Address City

1 Hansen Ola Timoteivn 10 Sandnes

Next, we want to select the persons with a last name that starts with "S", followed by any character,
followed by "end", followed by any character, followed by "on" from the "Persons" table.

We use the following SELECT statement:

SELECT * FROM Persons
WHERE LastName LIKE 'S_end_on'

The result-set will look like this:

P_Id LastName FirstName Address City

2 Svendson Tove Borgvn 23 Sandnes

Using the [charlist] Wildcard

Now we want to select the persons with a last name that starts with "b" or "s" or "p" from the "Persons"
table.

18

We use the following SELECT statement:

SELECT * FROM Persons
WHERE LastName LIKE '[bsp]%'

The result-set will look like this:

P_Id LastName FirstName Address City

2 Svendson Tove Borgvn 23 Sandnes

3 Pettersen Kari Storgt 20 Stavanger

Next, we want to select the persons with a last name that do not start with "b" or "s" or "p" from the
"Persons" table.

We use the following SELECT statement:

SELECT * FROM Persons
WHERE LastName LIKE '[!bsp]%'

The result-set will look like this:

P_Id LastName FirstName Address City

1 Hansen Ola Timoteivn 10 Sandnes

The LIKE Operator

 The LIKE operator is used in a WHERE clause to search for a specified pattern in a column.
 The LIKE operator is used to search for a specified pattern in a column.

 SQL LIKE Syntax:

SELECT column_name(s)
FROM table_name
WHERE column_name LIKE pattern

LIKE Operator Example

The "Persons" table:

19

P_Id LastName FirstName Address City

1 Hansen Ola Timoteivn 10 Sandnes

2 Svendson Tove Borgvn 23 Sandnes

3 Pettersen Kari Storgt 20 Stavanger

Now we want to select the persons living in a city that starts with "s" from the table above.

We use the following SELECT statement:

SELECT * FROM Persons
WHERE City LIKE 's%'

The "%" sign can be used to define wildcards (missing letters in the pattern) both before and after the
pattern.

The result-set will look like this:

P_Id LastName FirstName Address City

1 Hansen Ola Timoteivn 10 Sandnes

2 Svendson Tove Borgvn 23 Sandnes

3 Pettersen Kari Storgt 20 Stavanger

Next, we want to select the persons living in a city that ends with an "s" from the "Persons" table.

We use the following SELECT statement:

SELECT * FROM Persons
WHERE City LIKE '%s'

The result-set will look like this:

P_Id LastName FirstName Address City

20

1 Hansen Ola Timoteivn 10 Sandnes

2 Svendson Tove Borgvn 23 Sandnes

Next, we want to select the persons living in a city that contains the pattern "tav" from the "Persons"
table.

We use the following SELECT statement:

SELECT * FROM Persons
WHERE City LIKE '%tav%'

The result-set will look like this:

P_Id LastName FirstName Address City

3 Pettersen Kari Storgt 20 Stavanger

It is also possible to select the persons living in a city that NOT contains the pattern "tav" from the
"Persons" table, by using the NOT keyword.

We use the following SELECT statement:

SELECT * FROM Persons
WHERE City NOT LIKE '%tav%'

The result-set will look like this:

P_Id LastName FirstName Address City

1 Hansen Ola Timoteivn 10 Sandnes

2 Svendson Tove Borgvn 23 Sandnes

The IN Operator

 The IN operator allows you to specify multiple values in a WHERE clause.

21

 SQL IN Syntax:

SELECT column_name(s)
FROM table_name
WHERE column_name IN (value1,value2,...)

IN Operator Example

The "Persons" table:

P_Id LastName FirstName Address City

1 Hansen Ola Timoteivn 10 Sandnes

2 Svendson Tove Borgvn 23 Sandnes

3 Pettersen Kari Storgt 20 Stavanger

Now we want to select the persons with a last name equal to "Hansen" or "Pettersen" from the table
above.

We use the following SELECT statement:

SELECT * FROM Persons
WHERE LastName IN ('Hansen','Pettersen')

The result-set will look like this:

P_Id LastName FirstName Address City

1 Hansen Ola Timoteivn 10 Sandnes

3 Pettersen Kari Storgt 20 Stavanger

The BETWEEN Operator

22

 The BETWEEN operator is used in a WHERE clause to select a range of data between two
values.

 The BETWEEN operator selects a range of data between two values. The values can be numbers,
text, or dates.

 SQL BETWEEN Syntax:

SELECT column_name(s)
FROM table_name
WHERE column_name
BETWEEN value1 AND value2

BETWEEN Operator Example

The "Persons" table:

P_Id LastName FirstName Address City

1 Hansen Ola Timoteivn 10 Sandnes

2 Svendson Tove Borgvn 23 Sandnes

3 Pettersen Kari Storgt 20 Stavanger

Now we want to select the persons with a last name alphabetically between "Hansen" and "Pettersen"
from the table above.

We use the following SELECT statement:

SELECT * FROM Persons
WHERE LastName
BETWEEN 'Hansen' AND 'Pettersen'

The result-set will look like this:

P_Id LastName FirstName Address City

1 Hansen Ola Timoteivn 10 Sandnes

Note:

23

The BETWEEN operator is treated differently in different databases.

In some databases, persons with the LastName of "Hansen" or "Pettersen" will not be listed, because the
BETWEEN operator only selects fields that are between and excluding the test values).

In other databases, persons with the LastName of "Hansen" or "Pettersen" will be listed, because the
BETWEEN operator selects fields that are between and including the test values).

And in other databases, persons with the LastName of "Hansen" will be listed, but "Pettersen" will not be
listed (like the example above), because the BETWEEN operator selects fields between the test values,
including the first test value and excluding the last test value.

Therefore: Check how your database treats the BETWEEN operator.

Example 2

To display the persons outside the range in the previous example, use NOT BETWEEN:

SELECT * FROM Persons
WHERE LastName
NOT BETWEEN 'Hansen' AND 'Pettersen'

The result-set will look like this:

P_Id LastName FirstName Address City

2 Svendson Tove Borgvn 23 Sandnes

3 Pettersen Kari Storgt 20 Stavanger

SQL Alias

 With SQL, an alias name can be given to a table or to a column.
 You can give a table or a column another name by using an alias. This can be a good thing to do if

you have very long or complex table names or column names.

 An alias name could be anything, but usually it is short.

 SQL Alias Syntax for Tables:

SELECT column_name(s)
FROM table_name
AS alias_name

 SQL Alias Syntax for Columns:

SELECT column_name AS alias_name
FROM table_name

24

Alias Example

Assume we have a table called "Persons" and another table called "Product_Orders". We will give the
table aliases of "p" and "po" respectively.

Now we want to list all the orders that "Ola Hansen" is responsible for.

We use the following SELECT statement:

SELECT po.OrderID, p.LastName, p.FirstName
FROM Persons AS p, Product_Orders AS po
WHERE p.LastName='Hansen' AND p.FirstName='Ola'

The same SELECT statement without aliases:

SELECT Product_Orders.OrderID, Persons.LastName, Persons.FirstName
FROM Persons, Product_Orders
WHERE Persons.LastName='Hansen' AND Persons.FirstName='Ola'

Notes: As you'll see from the two SELECT statements above; aliases can make queries easier to both
write and to read.

SQL JOIN

 SQL joins are used to query data from two or more tables, based on a relationship between certain
columns in these tables.

 The JOIN keyword is used in an SQL statement to query data from two or more tables, based on a
relationship between certain columns in these tables.

 Tables in a database are often related to each other with keys.
 A primary key is a column (or a combination of columns) with a unique value for each row. Each

primary key value must be unique within the table. The purpose is to bind data together, across
tables, without repeating all of the data in every table.

Look at the "Persons" table:

P_Id LastName FirstName Address City

1 Hansen Ola Timoteivn 10 Sandnes

2 Svendson Tove Borgvn 23 Sandnes

3 Pettersen Kari Storgt 20 Stavanger

Note that the "P_Id" column is the primary key in the "Persons" table. This means that no two rows can
have the same P_Id. The P_Id distinguishes two persons even if they have the same name.

25

Next, we have the "Orders" table:

O_Id OrderNo P_Id

1 77895 3

2 44678 3

3 22456 1

4 24562 1

5 34764 15

Note that the "O_Id" column is the primary key in the "Orders" table and that the "P_Id" column refers to
the persons in the "Persons" table without using their names.

Notice that the relationship between the two tables above is the "P_Id" column.

Different SQL JOINs

Before we continue with examples, we will list the types of JOIN you can use, and the differences
between them.

 JOIN: Return rows when there is at least one match in both tables
 LEFT JOIN: Return all rows from the left table, even if there are no matches in the right table

 RIGHT JOIN: Return all rows from the right table, even if there are no matches in the left table

 FULL JOIN: Return rows when there is a match in one of the tables

SQL INNER JOIN Keyword

 The INNER JOIN keyword return rows when there is at least one match in both tables.

 SQL INNER JOIN Syntax:

SELECT column_name(s)
FROM table_name1
INNER JOIN table_name2
ON table_name1.column_name=table_name2.column_name

 PS: INNER JOIN is the same as JOIN.

SQL INNER JOIN Example

The "Persons" table:

P_Id LastName FirstName Address City

1 Hansen Ola Timoteivn 10 Sandnes

26

2 Svendson Tove Borgvn 23 Sandnes

3 Pettersen Kari Storgt 20 Stavanger

The "Orders" table:

O_Id OrderNo P_Id

1 77895 3

2 44678 3

3 22456 1

4 24562 1

5 34764 15

Now we want to list all the persons with any orders.

We use the following SELECT statement:

SELECT Persons.LastName, Persons.FirstName, Orders.OrderNo
FROM Persons INNER JOIN Orders ON Persons.P_Id=Orders.P_Id
ORDER BY Persons.LastName

The result-set will look like this:

LastName FirstName OrderNo

Hansen Ola 22456

Hansen Ola 24562

Pettersen Kari 77895

Pettersen Kari 44678

The INNER JOIN keyword return rows when there is at least one match in both tables. If there are rows
in "Persons" that do not have matches in "Orders", those rows will NOT be listed.

27

SQL LEFT JOIN Keyword

 The LEFT JOIN keyword returns all rows from the left table (table_name1), even if there are no
matches in the right table (table_name2).

 SQL LEFT JOIN Syntax:

SELECT column_name(s)
FROM table_name1 LEFT JOIN table_name2
ON table_name1.column_name=table_name2.column_name

 PS: In some databases LEFT JOIN is called LEFT OUTER JOIN.

SQL LEFT JOIN Example

The "Persons" table:

P_Id LastName FirstName Address City

1 Hansen Ola Timoteivn 10 Sandnes

2 Svendson Tove Borgvn 23 Sandnes

3 Pettersen Kari Storgt 20 Stavanger

The "Orders" table:

O_Id OrderNo P_Id

1 77895 3

2 44678 3

3 22456 1

4 24562 1

5 34764 15

Now we want to list all the persons and their orders - if any, from the tables above.

28

We use the following SELECT statement:

SELECT Persons.LastName, Persons.FirstName, Orders.OrderNo
FROM Persons LEFT JOIN Orders
ON Persons.P_Id=Orders.P_Id
ORDER BY Persons.LastName

The result-set will look like this:

LastName FirstName OrderNo

Hansen Ola 22456

Hansen Ola 24562

Pettersen Kari 77895

Pettersen Kari 44678

Svendson Tove

Notes: The LEFT JOIN keyword returns all the rows from the left table (Persons), even if there are no
matches in the right table (Orders).

SQL RIGHT JOIN Keyword

 The RIGHT JOIN keyword Return all rows from the right table (table_name2), even if there are
no matches in the left table (table_name1).

 SQL RIGHT JOIN Syntax:

SELECT column_name(s)
FROM table_name1
RIGHT JOIN table_name2
ON table_name1.column_name=table_name2.column_name

 PS: In some databases RIGHT JOIN is called RIGHT OUTER JOIN.

29

SQL RIGHT JOIN Example

The "Persons" table:

P_Id LastName FirstName Address City

1 Hansen Ola Timoteivn 10 Sandnes

2 Svendson Tove Borgvn 23 Sandnes

3 Pettersen Kari Storgt 20 Stavanger

The "Orders" table:

O_Id OrderNo P_Id

1 77895 3

2 44678 3

3 22456 1

4 24562 1

5 34764 15

Now we want to list all the orders with containing persons - if any, from the tables above.

We use the following SELECT statement:

SELECT Persons.LastName, Persons.FirstName, Orders.OrderNo
FROM Persons
RIGHT JOIN Orders
ON Persons.P_Id=Orders.P_Id
ORDER BY Persons.LastName

The result-set will look like this:

30

LastName FirstName OrderNo

Hansen Ola 22456

Hansen Ola 24562

Pettersen Kari 77895

Pettersen Kari 44678

 34764

Notes: The RIGHT JOIN keyword returns all the rows from the right table (Orders), even if there are no
matches in the left table (Persons).

SQL FULL JOIN Keyword

 The FULL JOIN keyword return rows when there is a match in one of the tables.

 SQL FULL JOIN Syntax:

SELECT column_name(s)
FROM table_name1
FULL JOIN table_name2
ON table_name1.column_name=table_name2.column_name

SQL FULL JOIN Example

The "Persons" table:

P_Id LastName FirstName Address City

1 Hansen Ola Timoteivn 10 Sandnes

2 Svendson Tove Borgvn 23 Sandnes

3 Pettersen Kari Storgt 20 Stavanger

The "Orders" table:

O_Id OrderNo P_Id

31

1 77895 3

2 44678 3

3 22456 1

4 24562 1

5 34764 15

Now we want to list all the persons and their orders, and all the orders with their persons.

We use the following SELECT statement:

SELECT Persons.LastName, Persons.FirstName, Orders.OrderNo

FROM Persons
FULL JOIN Orders
ON Persons.P_Id=Orders.P_Id
ORDER BY Persons.LastName

The result-set will look like this:

LastName FirstName OrderNo

Hansen Ola 22456

Hansen Ola 24562

Pettersen Kari 77895

Pettersen Kari 44678

Svendson Tove

 34764

Notes: The FULL JOIN keyword returns all the rows from the left table (Persons), and all the rows from
the right table (Orders). If there are rows in "Persons" that do not have matches in "Orders", or if there are
rows in "Orders" that do not have matches in "Persons", those rows will be listed as well.

The SQL UNION Operator

32

 The UNION operator is used to combine the result-set of two or more SELECT statements.
 Notice that each SELECT statement within the UNION must have the same number of columns.

The columns must also have similar data types. Also, the columns in each SELECT statement
must be in the same order.

 SQL UNION Syntax:

SELECT column_name(s) FROM table_name1
UNION
SELECT column_name(s) FROM table_name2

Note: The UNION operator selects only distinct values by default. To allow duplicate values,
use UNION ALL.

 SQL UNION ALL Syntax:

SELECT column_name(s) FROM table_name1
UNION ALL
SELECT column_name(s) FROM table_name2

 PS: The column names in the result-set of a UNION are always equal to the column names in the
first SELECT statement in the UNION.

SQL UNION Example

Look at the following tables:

"Employees_Norway":

E_ID E_Name

01 Hansen, Ola

02 Svendson, Tove

03 Svendson, Stephen

04 Pettersen, Kari

"Employees_USA":

E_ID E_Name

01 Turner, Sally

33

02 Kent, Clark

03 Svendson, Stephen

04 Scott, Stephen

Now we want to list all the different employees in Norway and USA.

We use the following SELECT statement:

SELECT E_Name FROM Employees_Norway
UNION
SELECT E_Name FROM Employees_USA

The result-set will look like this:

E_Name

Hansen, Ola

Svendson, Tove

Svendson, Stephen

Pettersen, Kari

Turner, Sally

Kent, Clark

Scott, Stephen

Note: This command cannot be used to list all employees in Norway and USA. In the example above we
have two employees with equal names, and only one of them will be listed. The UNION command selects
only distinct values.

SQL UNION ALL Example

Now we want to list all employees in Norway and USA:

SELECT E_Name FROM Employees_Norway
UNION ALL
SELECT E_Name FROM Employees_USA

34

Result

E_Name

Hansen, Ola

Svendson, Tove

Svendson, Stephen

Pettersen, Kari

Turner, Sally

Kent, Clark

Svendson, Stephen

Scott, Stephen

The SQL SELECT INTO Statement

 The SQL SELECT INTO statement can be used to create backup copies of tables.
 The SELECT INTO statement selects data from one table and inserts it into a different table.

 The SELECT INTO statement is most often used to create backup copies of tables.

 SQL SELECT INTO Syntax

We can select all columns into the new table:

SELECT *
INTO new_table_name [IN externaldatabase]
FROM old_tablename

Or we can select only the columns we want into the new table:

SELECT column_name(s)
INTO new_table_name [IN externaldatabase]
FROM old_tablename

35

SQL SELECT INTO Example

Make a Backup Copy - Now we want to make an exact copy of the data in our "Persons" table.

We use the following SQL statement:

SELECT *
INTO Persons_Backup
FROM Persons

We can also use the IN clause to copy the table into another database:

SELECT *
INTO Persons_Backup IN 'Backup.mdb'
FROM Persons

We can also copy only a few fields into the new table:

SELECT LastName,FirstName
INTO Persons_Backup
FROM Persons

SQL SELECT INTO - With a WHERE Clause

We can also add a WHERE clause.

The following SQL statement creates a "Persons_Backup" table with only the persons who lives in the
city "Sandnes":

SELECT LastName,Firstname
INTO Persons_Backup
FROM Persons
WHERE City='Sandnes'

SQL SELECT INTO - Joined Tables

Selecting data from more than one table is also possible.

The following example creates a "Persons_Order_Backup" table contains data from the two tables
"Persons" and "Orders":

36

SELECT Persons.LastName,Orders.OrderNo
INTO Persons_Order_Backup
FROM Persons
INNER JOIN Orders
ON Persons.P_Id=Orders.P_Id

The CREATE DATABASE Statement

 The CREATE DATABASE statement is used to create a database.

 SQL CREATE DATABASE Syntax:

CREATE DATABASE database_name

CREATE DATABASE Example

Now we want to create a database called "my_db".

We use the following CREATE DATABASE statement:

CREATE DATABASE my_db

Database tables can be added with the CREATE TABLE statement.

The CREATE TABLE Statement

The CREATE TABLE statement is used to create a table in a database.

SQL CREATE TABLE Syntax:
CREATE TABLE table_name
(
column_name1 data_type,
column_name2 data_type,
column_name3 data_type,
....
)

The data type specifies what type of data the column can hold. For a complete reference of all the data
types available in MS Access, MySQL, and SQL Server.

CREATE TABLE Example

Now we want to create a table called "Persons" that contains five columns: P_Id, LastName, FirstName,
Address, and City.

We use the following CREATE TABLE statement:

37

CREATE TABLE Persons
(
P_Id int,
LastName varchar(255),
FirstName varchar(255),
Address varchar(255),
City varchar(255)
)

The P_Id column is of type int and will hold a number. The LastName, FirstName, Address, and City
columns are of type varchar with a maximum length of 255 characters.

The empty "Persons" table will now look like this:

P_Id LastName FirstName Address City

The empty table can be filled with data with the INSERT INTO statement.

SQL Constraints

 Constraints are used to limit the type of data that can go into a table.
 Constraints can be specified when a table is created (with the CREATE TABLE statement) or

after the table is created (with the ALTER TABLE statement).

We will focus on the following constraints:

 NOT NULL
 UNIQUE

 PRIMARY KEY

 FOREIGN KEY

 CHECK

 DEFAULT

The next chapters will describe each constraint in details.

SQL NOT NULL Constraint

 The NOT NULL constraint enforces a column to NOT accept NULL values.
 The NOT NULL constraint enforces a field to always contain a value. This means that you cannot

insert a new record, or update a record without adding a value to this field.

38

The following SQL enforces the "P_Id" column and the "LastName" column to not accept NULL values:

CREATE TABLE Persons
(
P_Id int NOT NULL,
LastName varchar(255) NOT NULL,
FirstName varchar(255),
Address varchar(255),
City varchar(255)
)

SQL UNIQUE Constraint

 The UNIQUE constraint uniquely identifies each record in a database table.
 The UNIQUE and PRIMARY KEY constraints both provide a guarantee for uniqueness for a

column or set of columns.
 A PRIMARY KEY constraint automatically has a UNIQUE constraint defined on it.
 Note that you can have many UNIQUE constraints per table, but only one PRIMARY KEY

constraint per table.

SQL UNIQUE Constraint on CREATE TABLE

The following SQL creates a UNIQUE constraint on the "P_Id" column when the "Persons" table is
created:

MySQL:

CREATE TABLE Persons
(
P_Id int NOT NULL,
LastName varchar(255) NOT NULL,
FirstName varchar(255),
Address varchar(255),
City varchar(255),
UNIQUE (P_Id)
)

SQL Server / Oracle / MS Access:

CREATE TABLE Persons
(
P_Id int NOT NULL UNIQUE,
LastName varchar(255) NOT NULL,
FirstName varchar(255),
Address varchar(255),
City varchar(255)
)

39

To allow naming of a UNIQUE constraint, and for defining a UNIQUE constraint on multiple columns,
use the following SQL syntax:

MySQL / SQL Server / Oracle / MS Access:

CREATE TABLE Persons
(
P_Id int NOT NULL,
LastName varchar(255) NOT NULL,
FirstName varchar(255),
Address varchar(255),
City varchar(255),
CONSTRAINT uc_PersonID UNIQUE (P_Id,LastName)
)

SQL UNIQUE Constraint on ALTER TABLE

To create a UNIQUE constraint on the "P_Id" column when the table is already created, use the following
SQL:

MySQL / SQL Server / Oracle / MS Access:

ALTER TABLE Persons
ADD UNIQUE (P_Id)

To allow naming of a UNIQUE constraint, and for defining a UNIQUE constraint on multiple columns,
use the following SQL syntax:

MySQL / SQL Server / Oracle / MS Access:

ALTER TABLE Persons
ADD CONSTRAINT uc_PersonID UNIQUE (P_Id,LastName)

To DROP a UNIQUE Constraint

To drop a UNIQUE constraint, use the following SQL:

MySQL:

ALTER TABLE Persons
DROP INDEX uc_PersonID

SQL Server / Oracle / MS Access:

40

ALTER TABLE Persons
DROP CONSTRAINT uc_PersonID

SQL PRIMARY KEY Constraint

 The PRIMARY KEY constraint uniquely identifies each record in a database table.
 Primary keys must contain unique values.
 A primary key column cannot contain NULL values.
 Each table should have a primary key, and each table can have only ONE primary key.

SQL PRIMARY KEY Constraint on CREATE TABLE

The following SQL creates a PRIMARY KEY on the "P_Id" column when the "Persons" table is created:

MySQL:

CREATE TABLE Persons
(
P_Id int NOT NULL,
LastName varchar(255) NOT NULL,
FirstName varchar(255),
Address varchar(255),
City varchar(255),
PRIMARY KEY (P_Id)
)

SQL Server / Oracle / MS Access:

CREATE TABLE Persons
(
P_Id int NOT NULL PRIMARY KEY,
LastName varchar(255) NOT NULL,
FirstName varchar(255),
Address varchar(255),
City varchar(255)
)

To allow naming of a PRIMARY KEY constraint, and for defining a PRIMARY KEY constraint on
multiple columns, use the following SQL syntax:

MySQL / SQL Server / Oracle / MS Access:

41

CREATE TABLE Persons
(
P_Id int NOT NULL,
LastName varchar(255) NOT NULL,
FirstName varchar(255),
Address varchar(255),
City varchar(255),
CONSTRAINT pk_PersonID PRIMARY KEY (P_Id,LastName)
)

SQL PRIMARY KEY Constraint on ALTER TABLE

To create a PRIMARY KEY constraint on the "P_Id" column when the table is already created, use the
following SQL:

MySQL / SQL Server / Oracle / MS Access:

ALTER TABLE Persons
ADD PRIMARY KEY (P_Id)

To allow naming of a PRIMARY KEY constraint, and for defining a PRIMARY KEY constraint on
multiple columns, use the following SQL syntax:

MySQL / SQL Server / Oracle / MS Access:

ALTER TABLE Persons
ADD CONSTRAINT pk_PersonID PRIMARY KEY (P_Id,LastName)

Note: If you use the ALTER TABLE statement to add a primary key, the primary key column(s) must
already have been declared to not contain NULL values (when the table was first created).

To DROP a PRIMARY KEY Constraint

To drop a PRIMARY KEY constraint, use the following SQL:

MySQL:

ALTER TABLE Persons
DROP PRIMARY KEY

SQL Server / Oracle / MS Access:

ALTER TABLE Persons
DROP CONSTRAINT pk_PersonID

SQL FOREIGN KEY Constraint

42

 A FOREIGN KEY in one table points to a PRIMARY KEY in another table.

Let's illustrate the foreign key with an example. Look at the following two tables:

The "Persons" table:

P_Id LastName FirstName Address City

1 Hansen Ola Timoteivn 10 Sandnes

2 Svendson Tove Borgvn 23 Sandnes

3 Pettersen Kari Storgt 20 Stavanger

The "Orders" table:

O_Id OrderNo P_Id

1 77895 3

2 44678 3

3 22456 2

4 24562 1

Note that the "P_Id" column in the "Orders" table points to the "P_Id" column in the "Persons" table.

The "P_Id" column in the "Persons" table is the PRIMARY KEY in the "Persons" table.

The "P_Id" column in the "Orders" table is a FOREIGN KEY in the "Orders" table.

The FOREIGN KEY constraint is used to prevent actions that would destroy links between tables.

The FOREIGN KEY constraint also prevents that invalid data form being inserted into the foreign key
column, because it has to be one of the values contained in the table it points to.

SQL FOREIGN KEY Constraint on CREATE TABLE

The following SQL creates a FOREIGN KEY on the "P_Id" column when the "Orders" table is created:

MySQL:

CREATE TABLE Orders
(
O_Id int NOT NULL,
OrderNo int NOT NULL,
P_Id int,
PRIMARY KEY (O_Id),
FOREIGN KEY (P_Id) REFERENCES Persons(P_Id)
)

43

SQL Server / Oracle / MS Access:

CREATE TABLE Orders
(
O_Id int NOT NULL PRIMARY KEY,
OrderNo int NOT NULL,
P_Id int FOREIGN KEY REFERENCES Persons(P_Id)
)

To allow naming of a FOREIGN KEY constraint, and for defining a FOREIGN KEY constraint on
multiple columns, use the following SQL syntax:

MySQL / SQL Server / Oracle / MS Access:

CREATE TABLE Orders
(
O_Id int NOT NULL,
OrderNo int NOT NULL,
P_Id int,
PRIMARY KEY (O_Id),
CONSTRAINT fk_PerOrders FOREIGN KEY (P_Id)
REFERENCES Persons(P_Id)
)

SQL FOREIGN KEY Constraint on ALTER TABLE

To create a FOREIGN KEY constraint on the "P_Id" column when the "Orders" table is already created,
use the following SQL:

MySQL / SQL Server / Oracle / MS Access:

ALTER TABLE Orders
ADD FOREIGN KEY (P_Id)
REFERENCES Persons(P_Id)

To allow naming of a FOREIGN KEY constraint, and for defining a FOREIGN KEY constraint on
multiple columns, use the following SQL syntax:

MySQL / SQL Server / Oracle / MS Access:

ALTER TABLE Orders
ADD CONSTRAINT fk_PerOrders
FOREIGN KEY (P_Id)
REFERENCES Persons(P_Id)

To DROP a FOREIGN KEY Constraint

44

To drop a FOREIGN KEY constraint, use the following SQL:

MySQL:

ALTER TABLE Orders
DROP FOREIGN KEY fk_PerOrders

SQL Server / Oracle / MS Access:

ALTER TABLE Orders
DROP CONSTRAINT fk_PerOrders

SQL CHECK Constraint

 The CHECK constraint is used to limit the value range that can be placed in a column.
 If you define a CHECK constraint on a single column it allows only certain values for this

column.
 If you define a CHECK constraint on a table it can limit the values in certain columns based on

values in other columns in the row.

SQL CHECK Constraint on CREATE TABLE

The following SQL creates a CHECK constraint on the "P_Id" column when the "Persons" table is
created. The CHECK constraint specifies that the column "P_Id" must only include integers greater than
0.

My SQL:

CREATE TABLE Persons
(
P_Id int NOT NULL,
LastName varchar(255) NOT NULL,
FirstName varchar(255),
Address varchar(255),
City varchar(255),
CHECK (P_Id>0)
)

SQL Server / Oracle / MS Access:

CREATE TABLE Persons
(
P_Id int NOT NULL CHECK (P_Id>0),
LastName varchar(255) NOT NULL,
FirstName varchar(255),
Address varchar(255),
City varchar(255)
)

45

To allow naming of a CHECK constraint, and for defining a CHECK constraint on multiple columns, use
the following SQL syntax:

MySQL / SQL Server / Oracle / MS Access:

CREATE TABLE Persons
(
P_Id int NOT NULL,
LastName varchar(255) NOT NULL,
FirstName varchar(255),
Address varchar(255),
City varchar(255),
CONSTRAINT chk_Person CHECK (P_Id>0 AND City='Sandnes')
)

SQL CHECK Constraint on ALTER TABLE

To create a CHECK constraint on the "P_Id" column when the table is already created, use the following
SQL:

MySQL / SQL Server / Oracle / MS Access:

ALTER TABLE Persons
ADD CHECK (P_Id>0)

To allow naming of a CHECK constraint, and for defining a CHECK constraint on multiple columns, use
the following SQL syntax:

MySQL / SQL Server / Oracle / MS Access:

ALTER TABLE Persons
ADD CONSTRAINT chk_Person CHECK (P_Id>0 AND City='Sandnes')

To DROP a CHECK Constraint

To drop a CHECK constraint, use the following SQL:

SQL Server / Oracle / MS Access:

ALTER TABLE Persons
DROP CONSTRAINT chk_Person

SQL DEFAULT Constraint

 The DEFAULT constraint is used to insert a default value into a column.

46

 The default value will be added to all new records, if no other value is specified.

SQL DEFAULT Constraint on CREATE TABLE

The following SQL creates a DEFAULT constraint on the "City" column when the "Persons" table is
created:

My SQL / SQL Server / Oracle / MS Access:

CREATE TABLE Persons
(
P_Id int NOT NULL,
LastName varchar(255) NOT NULL,
FirstName varchar(255),
Address varchar(255),
City varchar(255) DEFAULT 'Sandnes'
)

The DEFAULT constraint can also be used to insert system values, by using functions like GETDATE():

CREATE TABLE Orders
(
O_Id int NOT NULL,
OrderNo int NOT NULL,
P_Id int,
OrderDate date DEFAULT GETDATE()
)

SQL DEFAULT Constraint on ALTER TABLE

To create a DEFAULT constraint on the "City" column when the table is already created, use the
following SQL:

MySQL:

ALTER TABLE Persons
ALTER City SET DEFAULT 'SANDNES'

SQL Server / Oracle / MS Access:

ALTER TABLE Persons
ALTER COLUMN City SET DEFAULT 'SANDNES'

To DROP a DEFAULT Constraint

To drop a DEFAULT constraint, use the following SQL:

47

MySQL:

ALTER TABLE Persons
ALTER City DROP DEFAULT

SQL Server / Oracle / MS Access:

ALTER TABLE Persons
ALTER COLUMN City DROP DEFAULT

Indexes

 The CREATE INDEX statement is used to create indexes in tables.

 Indexes allow the database application to find data fast; without reading the whole table.

 An index can be created in a table to find data more quickly and efficiently.

 The users cannot see the indexes, they are just used to speed up searches/queries.

Note: Updating a table with indexes takes more time than updating a table without (because the indexes
also need an update). So you should only create indexes on columns (and tables) that will be frequently
searched against.

SQL CREATE INDEX Syntax

Creates an index on a table. Duplicate values are allowed:

CREATE INDEX index_name
ON table_name (column_name)

SQL CREATE UNIQUE INDEX Syntax

Creates a unique index on a table. Duplicate values are not allowed:

CREATE UNIQUE INDEX index_name
ON table_name (column_name)

Note: The syntax for creating indexes varies amongst different databases. Therefore: Check the syntax for
creating indexes in your database.

CREATE INDEX Example

The SQL statement below creates an index named "PIndex" on the "LastName" column in the "Persons"
table:

CREATE INDEX PIndex
ON Persons (LastName)

48

If you want to create an index on a combination of columns, you can list the column names within the
parentheses, separated by commas:

CREATE INDEX PIndex
ON Persons (LastName, FirstName)

The DROP INDEX Statement

 Indexes, tables, and databases can easily be deleted/removed with the DROP statement.
 The DROP INDEX statement is used to delete an index in a table.

DROP INDEX Syntax for MS Access:
DROP INDEX index_name ON table_name

DROP INDEX Syntax for MS SQL Server:
DROP INDEX table_name.index_name

DROP INDEX Syntax for DB2/Oracle:
DROP INDEX index_name

DROP INDEX Syntax for MySQL:
ALTER TABLE table_name DROP INDEX index_name

The DROP TABLE Statement

The DROP TABLE statement is used to delete a table.

DROP TABLE table_name

The DROP DATABASE Statement

The DROP DATABASE statement is used to delete a database.

DROP DATABASE database_name

The TRUNCATE TABLE Statement

What if we only want to delete the data inside the table, and not the table itself?

Then, use the TRUNCATE TABLE statement:

TRUNCATE TABLE table_name

The ALTER TABLE Statement

49

The ALTER TABLE statement is used to add, delete, or modify columns in an existing table.

SQL ALTER TABLE Syntax

To add a column in a table, use the following syntax:

ALTER TABLE table_name
ADD column_name datatype

To delete a column in a table, use the following syntax (notice that some database systems don't allow
deleting a column):

ALTER TABLE table_name
DROP COLUMN column_name

To change the data type of a column in a table, use the following syntax:

ALTER TABLE table_name
ALTER COLUMN column_name datatype

SQL ALTER TABLE Example

Look at the "Persons" table:

P_Id LastName FirstName Address City

1 Hansen Ola Timoteivn 10 Sandnes

2 Svendson Tove Borgvn 23 Sandnes

3 Pettersen Kari Storgt 20 Stavanger

Now we want to add a column named "DateOfBirth" in the "Persons" table.

We use the following SQL statement:

ALTER TABLE Persons
ADD DateOfBirth date

Notice that the new column, "DateOfBirth", is of type date and is going to hold a date. The data type
specifies what type of data the column can hold. For a complete reference of all the data types available in
MS Access, MySQL, and SQL Server, go to our complete Data Types reference.

The "Persons" table will now like this:

50

P_Id LastName FirstName Address City DateOfBirth

1 Hansen Ola Timoteivn 10 Sandnes

2 Svendson Tove Borgvn 23 Sandnes

3 Pettersen Kari Storgt 20 Stavanger

Change Data Type Example

Now we want to change the data type of the column named "DateOfBirth" in the "Persons" table.

We use the following SQL statement:

ALTER TABLE Persons
ALTER COLUMN DateOfBirth year

Notice that the "DateOfBirth" column is now of type year and is going to hold a year in a two-digit or
four-digit format.

DROP COLUMN Example

Next, we want to delete the column named "DateOfBirth" in the "Persons" table.

We use the following SQL statement:

ALTER TABLE Persons
DROP COLUMN DateOfBirth

The "Persons" table will now like this:

P_Id LastName FirstName Address City

1 Hansen Ola Timoteivn 10 Sandnes

2 Svendson Tove Borgvn 23 Sandnes

3 Pettersen Kari Storgt 20 Stavanger

AUTO INCREMENT a Field

51

 Auto-increment allows a unique number to be generated when a new record is inserted into a
table.

 Very often we would like the value of the primary key field to be created automatically every
time a new record is inserted.

We would like to create an auto-increment field in a table.

Syntax for MySQL

The following SQL statement defines the "P_Id" column to be an auto-increment primary key field in the
"Persons" table:

CREATE TABLE Persons
(
P_Id int NOT NULL AUTO_INCREMENT,
LastName varchar(255) NOT NULL,
FirstName varchar(255),
Address varchar(255),
City varchar(255),
PRIMARY KEY (P_Id)
)

MySQL uses the AUTO_INCREMENT keyword to perform an auto-increment feature.

By default, the starting value for AUTO_INCREMENT is 1, and it will increment by 1 for each new
record.

To let the AUTO_INCREMENT sequence start with another value, use the following SQL statement:

ALTER TABLE Persons AUTO_INCREMENT=100

To insert a new record into the "Persons" table, we will not have to specify a value for the "P_Id" column
(a unique value will be added automatically):

INSERT INTO Persons (FirstName,LastName)
VALUES ('Lars','Monsen')

The SQL statement above would insert a new record into the "Persons" table. The "P_Id" column would
be assigned a unique value. The "FirstName" column would be set to "Lars" and the "LastName" column
would be set to "Monsen".

Syntax for SQL Server

The following SQL statement defines the "P_Id" column to be an auto-increment primary key field in the
"Persons" table:

CREATE TABLE Persons
(
P_Id int PRIMARY KEY IDENTITY,

52

LastName varchar(255) NOT NULL,
FirstName varchar(255),
Address varchar(255),
City varchar(255)
)

The MS SQL Server uses the IDENTITY keyword to perform an auto-increment feature.

By default, the starting value for IDENTITY is 1, and it will increment by 1 for each new record.

To specify that the "P_Id" column should start at value 10 and increment by 5, change the identity to
IDENTITY(10,5).

To insert a new record into the "Persons" table, we will not have to specify a value for the "P_Id" column
(a unique value will be added automatically):

INSERT INTO Persons (FirstName,LastName)
VALUES ('Lars','Monsen')

The SQL statement above would insert a new record into the "Persons" table. The "P_Id" column would
be assigned a unique value. The "FirstName" column would be set to "Lars" and the "LastName" column
would be set to "Monsen".

Syntax for Access

The following SQL statement defines the "P_Id" column to be an auto-increment primary key field in the
"Persons" table:

CREATE TABLE Persons
(
P_Id PRIMARY KEY AUTOINCREMENT,
LastName varchar(255) NOT NULL,
FirstName varchar(255),
Address varchar(255),
City varchar(255)
)

The MS Access uses the AUTOINCREMENT keyword to perform an auto-increment feature.

By default, the starting value for AUTOINCREMENT is 1, and it will increment by 1 for each new
record.

To specify that the "P_Id" column should start at value 10 and increment by 5, change the autoincrement
to AUTOINCREMENT(10,5).

To insert a new record into the "Persons" table, we will not have to specify a value for the "P_Id" column
(a unique value will be added automatically):

53

INSERT INTO Persons (FirstName,LastName)
VALUES ('Lars','Monsen')

The SQL statement above would insert a new record into the "Persons" table. The "P_Id" column would
be assigned a unique value. The "FirstName" column would be set to "Lars" and the "LastName" column
would be set to "Monsen".

Syntax for Oracle

In Oracle the code is a little bit more tricky.

You will have to create an auto-increment field with the sequence object (this object generates a number
sequence).

Use the following CREATE SEQUENCE syntax:

CREATE SEQUENCE seq_person
MINVALUE 1
START WITH 1
INCREMENT BY 1
CACHE 10

The code above creates a sequence object called seq_person, that starts with 1 and will increment by 1. It
will also cache up to 10 values for performance. The cache option specifies how many sequence values
will be stored in memory for faster access.

To insert a new record into the "Persons" table, we will have to use the nextval function (this function
retrieves the next value from seq_person sequence):

INSERT INTO Persons (P_Id,FirstName,LastName)
VALUES (seq_person.nextval,'Lars','Monsen')

The SQL statement above would insert a new record into the "Persons" table. The "P_Id" column would
be assigned the next number from the seq_person sequence. The "FirstName" column would be set to
"Lars" and the "LastName" column would be set to "Monsen".

SQL CREATE VIEW Statement

 In SQL, a view is a virtual table based on the result-set of an SQL statement.
 A view contains rows and columns, just like a real table. The fields in a view are fields from one

or more real tables in the database.

 You can add SQL functions, WHERE, and JOIN statements to a view and present the data as if
the data were coming from one single table.

 SQL CREATE VIEW Syntax:

CREATE VIEW view_name AS
SELECT column_name(s)

54

FROM table_name
WHERE condition

Note: A view always shows up-to-date data! The database engine recreates the data, using the view's SQL
statement, every time a user queries a view.

SQL CREATE VIEW Examples

If you have the Northwind database you can see that it has several views installed by default.

The view "Current Product List" lists all active products (products that are not discontinued) from the
"Products" table. The view is created with the following SQL:

CREATE VIEW [Current Product List] AS
SELECT ProductID,ProductName
FROM Products
WHERE Discontinued=No

We can query the view above as follows:

SELECT * FROM [Current Product List]

Another view in the Northwind sample database selects every product in the "Products" table with a unit
price higher than the average unit price:

CREATE VIEW [Products Above Average Price] AS
SELECT ProductName,UnitPrice
FROM Products
WHERE UnitPrice>(SELECT AVG(UnitPrice) FROM Products)

We can query the view above as follows:

SELECT * FROM [Products Above Average Price]

Another view in the Northwind database calculates the total sale for each category in 1997. Note that this
view selects its data from another view called "Product Sales for 1997":

CREATE VIEW [Category Sales For 1997] AS
SELECT DISTINCT CategoryName,Sum(ProductSales) AS CategorySales
FROM [Product Sales for 1997]
GROUP BY CategoryName

We can query the view above as follows:

SELECT * FROM [Category Sales For 1997]

We can also add a condition to the query. Now we want to see the total sale only for the category
"Beverages":

55

SELECT * FROM [Category Sales For 1997]
WHERE CategoryName='Beverages'

SQL Updating a View

You can update a view by using the following syntax:

SQL CREATE OR REPLACE VIEW Syntax:
CREATE OR REPLACE VIEW view_name AS
SELECT column_name(s)
FROM table_name
WHERE condition

Now we want to add the "Category" column to the "Current Product List" view. We will update the view
with the following SQL:

CREATE VIEW [Current Product List] AS
SELECT ProductID,ProductName,Category
FROM Products
WHERE Discontinued=No

SQL Dropping a View

You can delete a view with the DROP VIEW command.

SQL DROP VIEW Syntax:
DROP VIEW view_name

SQL Dates

The most difficult part when working with dates is to be sure that the format of the date you are trying to
insert, matches the format of the date column in the database.

As long as your data contains only the date portion, your queries will work as expected. However, if a
time portion is involved, it gets complicated.

Before talking about the complications of querying for dates, we will look at the most important built-in
functions for working with dates.

MySQL Date Functions

The following table lists the most important built-in date functions in MySQL:

56

Function Description

NOW() Returns the current date and time

CURDATE() Returns the current date

CURTIME() Returns the current time

DATE() Extracts the date part of a date or date/time expression

EXTRACT() Returns a single part of a date/time

DATE_ADD() Adds a specified time interval to a date

DATE_SUB() Subtracts a specified time interval from a date

DATEDIFF() Returns the number of days between two dates

DATE_FORMAT() Displays date/time data in different formats

SQL Server Date Functions

The following table lists the most important built-in date functions in SQL Server:

Function Description

GETDATE() Returns the current date and time

DATEPART() Returns a single part of a date/time

DATEADD() Adds or subtracts a specified time interval from a date

DATEDIFF() Returns the time between two dates

CONVERT() Displays date/time data in different formats

SQL Date Data Types

MySQL comes with the following data types for storing a date or a date/time value in the database:

 DATE - format YYYY-MM-DD
 DATETIME - format: YYYY-MM-DD HH:MM:SS

 TIMESTAMP - format: YYYY-MM-DD HH:MM:SS

 YEAR - format YYYY or YY

SQL Server comes with the following data types for storing a date or a date/time value in the database:

 DATE - format YYYY-MM-DD
 DATETIME - format: YYYY-MM-DD HH:MM:SS

 SMALLDATETIME - format: YYYY-MM-DD HH:MM:SS

 TIMESTAMP - format: a unique number

57

Note: The date types are chosen for a column when you create a new table in your database!

For an overview of all data types available.

SQL Working with Dates

You can compare two dates easily if there is no time component involved!

Assume we have the following "Orders" table:

OrderId ProductName OrderDate

1 Geitost 2008-11-11

2 Camembert Pierrot 2008-11-09

3 Mozzarella di Giovanni 2008-11-11

4 Mascarpone Fabioli 2008-10-29

Now we want to select the records with an OrderDate of "2008-11-11" from the table above.

We use the following SELECT statement:

SELECT * FROM Orders WHERE OrderDate='2008-11-11'

The result-set will look like this:

OrderId ProductName OrderDate

1 Geitost 2008-11-11

3 Mozzarella di Giovanni 2008-11-11

Now, assume that the "Orders" table looks like this (notice the time component in the "OrderDate"
column):

OrderId ProductName OrderDate

1 Geitost 2008-11-11 13:23:44

2 Camembert Pierrot 2008-11-09 15:45:21

3 Mozzarella di Giovanni 2008-11-11 11:12:01

4 Mascarpone Fabioli 2008-10-29 14:56:59

If we use the same SELECT statement as above:

SELECT * FROM Orders WHERE OrderDate='2008-11-11'

we will get no result! This is because the query is looking only for dates with no time portion.

58

Tip: If you want to keep your queries simple and easy to maintain, do not allow time components in your
dates!

Definition and Usage

NOW() returns the current date and time.

Syntax
NOW()

Example

The following SELECT statement:

SELECT NOW(),CURDATE(),CURTIME()

will result in something like this:

NOW() CURDATE() CURTIME()

2008-11-11 12:45:34 2008-11-11 12:45:34

Example

The following SQL creates an "Orders" table with a datetime column (OrderDate):

CREATE TABLE Orders
(
OrderId int NOT NULL,
ProductName varchar(50) NOT NULL,
OrderDate datetime NOT NULL DEFAULT NOW(),
PRIMARY KEY (OrderId)
)

Notice that the OrderDate column specifies NOW() as the default value. As a result, when you insert a
row into the table, the current date and time are automatically inserted into the column.

Now we want to insert a record into the "Orders" table:

INSERT INTO Orders (ProductName) VALUES ('Jarlsberg Cheese')

The "Orders" table will now look something like this:

OrderId ProductName OrderDate

1 Jarlsberg Cheese 2008-11-11 13:23:44.657

59

Definition and Usage

CURDATE() returns the current date.

Syntax
CURDATE()

Example

The following SELECT statement:

SELECT NOW(),CURDATE(),CURTIME()

will result in something like this:

NOW() CURDATE() CURTIME()

2008-11-11 12:45:34 2008-11-11 12:45:34

Example

The following SQL creates an "Orders" table with a datetime column (OrderDate):

CREATE TABLE Orders
(
OrderId int NOT NULL,
ProductName varchar(50) NOT NULL,
OrderDate datetime NOT NULL DEFAULT CURDATE(),
PRIMARY KEY (OrderId)
)

Notice that the OrderDate column specifies CURDATE() as the default value. As a result, when you insert
a row into the table, the current date are automatically inserted into the column.

Now we want to insert a record into the "Orders" table:

INSERT INTO Orders (ProductName) VALUES ('Jarlsberg Cheese')

The "Orders" table will now look something like this:

OrderId ProductName OrderDate

1 Jarlsberg Cheese 2008-11-11

60

Definition and Usage

CURTIME() returns the current time.

Syntax
CURTIME()

Example

The following SELECT statement:

SELECT NOW(),CURDATE(),CURTIME()

will result in something like this:

NOW() CURDATE() CURTIME()

2008-11-11 12:45:34 2008-11-11 12:45:34

Definition and Usage

The DATE() function extracts the date part of a date or date/time expression.

Syntax
DATE(date)

Where date is a valid date expression.

Example

Assume we have the following "Orders" table:

OrderId ProductName OrderDate

1 Jarlsberg Cheese 2008-11-11 13:23:44.657

The following SELECT statement:

SELECT ProductName, DATE(OrderDate) AS OrderDate
FROM Orders
WHERE OrderId=1

will result in this:

61

ProductName OrderDate

Jarlsberg Cheese 2008-11-11

Definition and Usage

The EXTRACT() function is used to return a single part of a date/time, such as year, month, day, hour,
minute, etc.

Syntax
EXTRACT(unit FROM date)

Where date is a valid date expression and unit can be one of the following:

Unit Value

MICROSECOND

SECOND

MINUTE

HOUR

DAY

WEEK

MONTH

QUARTER

YEAR

SECOND_MICROSECOND

MINUTE_MICROSECOND

MINUTE_SECOND

HOUR_MICROSECOND

HOUR_SECOND

62

HOUR_MINUTE

DAY_MICROSECOND

DAY_SECOND

DAY_MINUTE

DAY_HOUR

YEAR_MONTH

Example

Assume we have the following "Orders" table:

OrderId ProductName OrderDate

1 Jarlsberg Cheese 2008-11-11 13:23:44.657

The following SELECT statement:

SELECT EXTRACT(YEAR FROM OrderDate) AS OrderYear,
EXTRACT(MONTH FROM OrderDate) AS OrderMonth,
EXTRACT(DAY FROM OrderDate) AS OrderDay,
FROM Orders
WHERE OrderId=1

will result in this:

OrderYear OrderMonth OrderDay

2008 11 11

Definition and Usage

The DATE_ADD() function adds a specified time interval to a date.

Syntax
DATE_ADD(date,INTERVAL expr type)

Where date is a valid date expression and expr is the number of interval you want to add.

type can be one of the following:

63

Type Value

MICROSECOND

SECOND

MINUTE

HOUR

DAY

WEEK

MONTH

QUARTER

YEAR

SECOND_MICROSECOND

MINUTE_MICROSECOND

MINUTE_SECOND

HOUR_MICROSECOND

HOUR_SECOND

HOUR_MINUTE

DAY_MICROSECOND

DAY_SECOND

DAY_MINUTE

DAY_HOUR

YEAR_MONTH

Example

Assume we have the following "Orders" table:

64

OrderId ProductName OrderDate

1 Jarlsberg Cheese 2008-11-11 13:23:44.657

Now we want to add 45 days to the "OrderDate", to find the payment date.

We use the following SELECT statement:

SELECT OrderId,DATE_ADD(OrderDate,INTERVAL 45 DAY) AS OrderPayDate
FROM Orders

Result:

OrderId OrderPayDate

1 2008-12-26 13:23:44.657

Definition and Usage

The DATE_SUB() function subtracts a specified time interval from a date.

Syntax
DATE_SUB(date,INTERVAL expr type)

Where date is a valid date expression and expr is the number of interval you want to subtract.

type can be one of the following:

Type Value

MICROSECOND

SECOND

MINUTE

HOUR

DAY

WEEK

MONTH

65

QUARTER

YEAR

SECOND_MICROSECOND

MINUTE_MICROSECOND

MINUTE_SECOND

HOUR_MICROSECOND

HOUR_SECOND

HOUR_MINUTE

DAY_MICROSECOND

DAY_SECOND

DAY_MINUTE

DAY_HOUR

YEAR_MONTH

Example

Assume we have the following "Orders" table:

OrderId ProductName OrderDate

1 Jarlsberg Cheese 2008-11-11 13:23:44.657

Now we want to subtract 5 days from the "OrderDate" date.

We use the following SELECT statement:

SELECT OrderId,DATE_SUB(OrderDate,INTERVAL 5 DAY) AS SubtractDate
FROM Orders

Result:

66

OrderId SubtractDate

1 2008-11-06 13:23:44.657

Definition and Usage

The DATEDIFF() function returns the time between two dates.

Syntax
DATEDIFF(date1,date2)

Where date1 and date2 are valid date or date/time expressions.

Note: Only the date parts of the values are used in the calculation.

Example

The following SELECT statement:

SELECT DATEDIFF('2008-11-30','2008-11-29') AS DiffDate

will result in this:

DiffDate

1

Example

The following SELECT statement:

SELECT DATEDIFF('2008-11-29','2008-11-30') AS DiffDate

will result in this:

DiffDate

-1

Definition and Usage

67

The DATE_FORMAT() function is used to display date/time data in different formats.

Syntax
DATE_FORMAT(date,format)

Where date is a valid date and format specifies the output format for the date/time.

The formats that can be used are:

Format Description

%a Abbreviated weekday name

%b Abbreviated month name

%c Month, numeric

%D Day of month with English suffix

%d Day of month, numeric (00-31)

%e Day of month, numeric (0-31)

%f Microseconds

%H Hour (00-23)

%h Hour (01-12)

%I Hour (01-12)

%i Minutes, numeric (00-59)

%j Day of year (001-366)

%k Hour (0-23)

%l Hour (1-12)

%M Month name

%m Month, numeric (00-12)

%p AM or PM

%r Time, 12-hour (hh:mm:ss AM or PM)

68

%S Seconds (00-59)

%s Seconds (00-59)

%T Time, 24-hour (hh:mm:ss)

%U Week (00-53) where Sunday is the first day of week

%u Week (00-53) where Monday is the first day of week

%V Week (01-53) where Sunday is the first day of week, used with %X

%v Week (01-53) where Monday is the first day of week, used with %x

%W Weekday name

%w Day of the week (0=Sunday, 6=Saturday)

%X Year of the week where Sunday is the first day of week, four digits, used with %V

%x Year of the week where Monday is the first day of week, four digits, used with %v

%Y Year, four digits

%y Year, two digits

Example

The following script uses the DATE_FORMAT() function to display different formats. We will use the
NOW() function to get the current date/time:

DATE_FORMAT(NOW(),'%b %d %Y %h:%i %p')
DATE_FORMAT(NOW(),'%m-%d-%Y')
DATE_FORMAT(NOW(),'%d %b %y')
DATE_FORMAT(NOW(),'%d %b %Y %T:%f')

The result would look something like this:

Nov 04 2008 11:45 PM
11-04-2008
04 Nov 08
04 Nov 2008 11:45:34:243

Definition and Usage

69

The GETDATE() function returns the current date and time from the SQL Server.

Syntax
GETDATE()

Example

The following SELECT statement:

SELECT GETDATE() AS CurrentDateTime

will result in something like this:

CurrentDateTime

2008-11-11 12:45:34.243

Note: The time part above goes all the way to milliseconds.

Example

The following SQL creates an "Orders" table with a datetime column (OrderDate):

CREATE TABLE Orders
(
OrderId int NOT NULL PRIMARY KEY,
ProductName varchar(50) NOT NULL,
OrderDate datetime NOT NULL DEFAULT GETDATE()
)

Notice that the OrderDate column specifies GETDATE() as the default value. As a result, when you insert
a row into the table, the current date and time are automatically inserted into the column.

Now we want to insert a record into the "Orders" table:

INSERT INTO Orders (ProductName) VALUES ('Jarlsberg Cheese')

The "Orders" table will now look something like this:

OrderId ProductName OrderDate

1 Jarlsberg Cheese 2008-11-11 13:23:44.657

70

Definition and Usage

The DATEPART() function is used to return a single part of a date/time, such as year, month, day, hour,
minute, etc.

Syntax
DATEPART(datepart,date)

Where date is a valid date expression and datepart can be one of the following:

datepart Abbreviation

year yy, yyyy

quarter qq, q

month mm, m

dayofyear dy, y

day dd, d

week wk, ww

weekday dw, w

hour hh

minute mi, n

second ss, s

millisecond ms

microsecond mcs

nanosecond ns

Example

Assume we have the following "Orders" table:

71

OrderId ProductName OrderDate

1 Jarlsberg Cheese 2008-11-11 13:23:44.657

The following SELECT statement:

SELECT DATEPART(yyyy,OrderDate) AS OrderYear,
DATEPART(mm,OrderDate) AS OrderMonth,
DATEPART(dd,OrderDate) AS OrderDay,
FROM Orders
WHERE OrderId=1

will result in this:

OrderYear OrderMonth OrderDay

2008 11 11

Definition and Usage

The DATEADD() function is adds or subtracts a specified time interval from a date.

Syntax
DATEADD(datepart,number,date)

Where date is a valid date expression and number is the number of interval you want to add. The number
can either be positive, for dates in the future, or negative, for dates in the past.

datepart can be one of the following:

datepart Abbreviation

year yy, yyyy

quarter qq, q

month mm, m

dayofyear dy, y

day dd, d

week wk, ww

72

weekday dw, w

hour hh

minute mi, n

second ss, s

millisecond ms

microsecond mcs

nanosecond ns

Example

Assume we have the following "Orders" table:

OrderId ProductName OrderDate

1 Jarlsberg Cheese 2008-11-11 13:23:44.657

Now we want to add 45 days to the "OrderDate", to find the payment date.

We use the following SELECT statement:

SELECT OrderId,DATEADD(day,45,OrderDate) AS OrderPayDate
FROM Orders

Result:

OrderId OrderPayDate

1 2008-12-26 13:23:44.657

Definition and Usage

The DATEDIFF() function returns the time between two dates.

Syntax
DATEDIFF(datepart,startdate,enddate)

73

Where startdate and enddate are valid date expressions and datepart can be one of the following:

datepart Abbreviation

year yy, yyyy

quarter qq, q

month mm, m

dayofyear dy, y

day dd, d

week wk, ww

weekday dw, w

hour hh

minute mi, n

second ss, s

millisecond ms

microsecond mcs

nanosecond ns

Example

Now we want to get the number of days between two dates.

We use the following SELECT statement:

SELECT DATEDIFF(day,'2008-06-05','2008-08-05') AS DiffDate

Result:

DiffDate

61

74

Example

Now we want to get the number of days between two dates (notice that the second date is "earlier" than
the first date, and will result in a negative number).

We use the following SELECT statement:

SELECT DATEDIFF(day,'2008-08-05','2008-06-05') AS DiffDate

Result:

DiffDate

-61

Definition and Usage

The CONVERT() function is a general function for converting data into a new data type.

The CONVERT() function can be used to display date/time data in different formats.

Syntax
CONVERT(data_type(length),data_to_be_converted,style)

Where data_type(length) specifies the target data type (with an optional length), data_to_be_converted
contains the value to be converted, and style specifies the output format for the date/time.

The styles that can be used are:

Style ID Style Format

100 or 0 mon dd yyyy hh:miAM (or PM)

101 mm/dd/yy

102 yy.mm.dd

103 dd/mm/yy

104 dd.mm.yy

105 dd-mm-yy

75

106 dd mon yy

107 Mon dd, yy

108 hh:mm:ss

109 or 9 mon dd yyyy hh:mi:ss:mmmAM (or PM)

110 mm-dd-yy

111 yy/mm/dd

112 yymmdd

113 or 13 dd mon yyyy hh:mm:ss:mmm(24h)

114 hh:mi:ss:mmm(24h)

120 or 20 yyyy-mm-dd hh:mi:ss(24h)

121 or 21 yyyy-mm-dd hh:mi:ss.mmm(24h)

126 yyyy-mm-ddThh:mm:ss.mmm(no spaces)

130 dd mon yyyy hh:mi:ss:mmmAM

131 dd/mm/yy hh:mi:ss:mmmAM

Example

The following script uses the CONVERT() function to display different formats. We will use the
GETDATE() function to get the current date/time:

CONVERT(VARCHAR(19),GETDATE())
CONVERT(VARCHAR(10),GETDATE(),110)
CONVERT(VARCHAR(11),GETDATE(),106)
CONVERT(VARCHAR(24),GETDATE(),113)

The result would look something like this:

Nov 04 2008 11:45 PM
11-04-2008
04 Nov 08
04 Nov 2008 11:45:34:243

76

NULL values represent missing unknown data. By default, a table column can hold NULL values.

SQL NULL Values

 If a column in a table is optional, we can insert a new record or update an existing record without
adding a value to this column. This means that the field will be saved with a NULL value.

 NULL values are treated differently from other values.
 NULL is used as a placeholder for unknown or inapplicable values.
 Note: It is not possible to compare NULL and 0; they are not equivalent.

SQL Working with NULL Values

Look at the following "Persons" table:

P_Id LastName FirstName Address City

1 Hansen Ola Sandnes

2 Svendson Tove Borgvn 23 Sandnes

3 Pettersen Kari Stavanger

Suppose that the "Address" column in the "Persons" table is optional. This means that if we insert a
record with no value for the "Address" column, the "Address" column will be saved with a NULL value.

How can we test for NULL values?

It is not possible to test for NULL values with comparison operators, such as =, <, or <>.

We will have to use the IS NULL and IS NOT NULL operators instead.

SQL IS NULL

How do we select only the records with NULL values in the "Address" column?

We will have to use the IS NULL operator:

SELECT LastName,FirstName,Address FROM Persons
WHERE Address IS NULL

The result-set will look like this:

LastName FirstName Address

Hansen Ola

Pettersen Kari

Tip: Always use IS NULL to look for NULL values.

77

SQL IS NOT NULL

How do we select only the records with no NULL values in the "Address" column?

We will have to use the IS NOT NULL operator:

SELECT LastName,FirstName,Address FROM Persons
WHERE Address IS NOT NULL

The result-set will look like this:

LastName FirstName Address

Svendson Tove Borgvn 23

In the next chapter we will look at the ISNULL(), NVL(), IFNULL() and COALESCE() functions.

SQL ISNULL(), NVL(), IFNULL() and COALESCE() Functions

Look at the following "Products" table:

P_Id ProductName UnitPrice UnitsInStock UnitsOnOrder

1 Jarlsberg 10.45 16 15

2 Mascarpone 32.56 23

3 Gorgonzola 15.67 9 20

Suppose that the "UnitsOnOrder" column is optional, and may contain NULL values.

We have the following SELECT statement:

SELECT ProductName,UnitPrice*(UnitsInStock+UnitsOnOrder)
FROM Products

In the example above, if any of the "UnitsOnOrder" values are NULL, the result is NULL.

Microsoft's ISNULL() function is used to specify how we want to treat NULL values.

The NVL(), IFNULL(), and COALESCE() functions can also be used to achieve the same result.

In this case we want NULL values to be zero.

Below, if "UnitsOnOrder" is NULL it will not harm the calculation, because ISNULL() returns a zero if
the value is NULL:

SQL Server / MS Access

78

SELECT ProductName,UnitPrice*(UnitsInStock+ISNULL(UnitsOnOrder,0))
FROM Products

Oracle

Oracle does not have an ISNULL() function. However, we can use the NVL() function to achieve the
same result:

SELECT ProductName,UnitPrice*(UnitsInStock+NVL(UnitsOnOrder,0))
FROM Products

MySQL

MySQL does have an ISNULL() function. However, it works a little bit different from Microsoft's
ISNULL() function.

In MySQL we can use the IFNULL() function, like this:

SELECT ProductName,UnitPrice*(UnitsInStock+IFNULL(UnitsOnOrder,0))
FROM Products

or we can use the COALESCE() function, like this:

SELECT ProductName,UnitPrice*(UnitsInStock+COALESCE(UnitsOnOrder,0))
FROM Products

Microsoft Access Data Types

Data types and ranges for Microsoft Access, MySQL and SQL Server.

Data type Description Storage

Text Use for text or combinations of text and numbers. 255 characters
maximum

Memo Memo is used for larger amounts of text. Stores up to 65,536
characters. Note: You cannot sort a memo field. However, they are
searchable

Byte Allows whole numbers from 0 to 255 1 byte

Integer Allows whole numbers between -32,768 and 32,767 2 bytes

Long Allows whole numbers between -2,147,483,648 and 2,147,483,647 4 bytes

Single Single precision floating-point. Will handle most decimals 4 bytes

Double Double precision floating-point. Will handle most decimals 8 bytes

Currency Use for currency. Holds up to 15 digits of whole dollars, plus 4 decimal
places. Tip: You can choose which country's currency to use

8 bytes

AutoNumber AutoNumber fields automatically give each record its own number,
usually starting at 1

4 bytes

79

Date/Time Use for dates and times 8 bytes

Yes/No A logical field can be displayed as Yes/No, True/False, or On/Off. In code,
use the constants True and False (equivalent to -1 and 0).Note: Null values
are not allowed in Yes/No fields

1 bit

Ole Object Can store pictures, audio, video, or other BLOBs (Binary Large OBjects) up to 1GB

Hyperlink Contain links to other files, including web pages

Lookup Wizard Let you type a list of options, which can then be chosen from a drop-down
list

4 bytes

MySQL Data Types

In MySQL there are three main types : text, number, and Date/Time types.

Text types:

Data type Description

CHAR(size) Holds a fixed length string (can contain letters, numbers, and special characters). The
fixed size is specified in parenthesis. Can store up to 255 characters

VARCHAR(size) Holds a variable length string (can contain letters, numbers, and special characters). The
maximum size is specified in parenthesis. Can store up to 255 characters. Note: If you
put a greater value than 255 it will be converted to a TEXT type

TINYTEXT Holds a string with a maximum length of 255 characters

TEXT Holds a string with a maximum length of 65,535 characters

BLOB For BLOBs (Binary Large OBjects). Holds up to 65,535 bytes of data

MEDIUMTEXT Holds a string with a maximum length of 16,777,215 characters

MEDIUMBLOB For BLOBs (Binary Large OBjects). Holds up to 16,777,215 bytes of data

LONGTEXT Holds a string with a maximum length of 4,294,967,295 characters

LONGBLOB For BLOBs (Binary Large OBjects). Holds up to 4,294,967,295 bytes of data

ENUM(x,y,z,etc.) Let you enter a list of possible values. You can list up to 65535 values in an ENUM list.
If a value is inserted that is not in the list, a blank value will be inserted.

Note: The values are sorted in the order you enter them.

You enter the possible values in this format: ENUM('X','Y','Z')

SET Similar to ENUM except that SET may contain up to 64 list items and can store more
than one choice

Number types:

Data type Description

TINYINT(size) -128 to 127 normal. 0 to 255 UNSIGNED*. The maximum number of digits may be

80

specified in parenthesis

SMALLINT(size) -32768 to 32767 normal. 0 to 65535 UNSIGNED*. The maximum number of digits
may be specified in parenthesis

MEDIUMINT(size
)

-8388608 to 8388607 normal. 0 to 16777215 UNSIGNED*. The maximum number
of digits may be specified in parenthesis

INT(size) -2147483648 to 2147483647 normal. 0 to 4294967295 UNSIGNED*. The maximum
number of digits may be specified in parenthesis

BIGINT(size) -9223372036854775808 to 9223372036854775807 normal. 0 to
18446744073709551615 UNSIGNED*. The maximum number of digits may be
specified in parenthesis

FLOAT(size,d) A small number with a floating decimal point. The maximum number of digits may
be specified in the size parameter. The maximum number of digits to the right of the
decimal point is specified in the d parameter

DOUBLE(size,d) A large number with a floating decimal point. The maximum number of digits may be
specified in the size parameter. The maximum number of digits to the right of the
decimal point is specified in the d parameter

DECIMAL(size,d) A DOUBLE stored as a string , allowing for a fixed decimal point. The maximum
number of digits may be specified in the size parameter. The maximum number of
digits to the right of the decimal point is specified in the d parameter

*The integer types have an extra option called UNSIGNED. Normally, the integer goes from an negative
to positive value. Adding the UNSIGNED attribute will move that range up so it starts at zero instead of a
negative number.

Date types:

Data type Description

DATE() A date. Format: YYYY-MM-DD
Note: The supported range is from '1000-01-01' to '9999-12-31'

DATETIME() *A date and time combination. Format: YYYY-MM-DD HH:MM:SS
Note: The supported range is from '1000-01-01 00:00:00' to '9999-12-31 23:59:59'

TIMESTAMP() *A timestamp. TIMESTAMP values are stored as the number of seconds since the Unix
epoch ('1970-01-01 00:00:00' UTC). Format: YYYY-MM-DD HH:MM:SS
Note: The supported range is from '1970-01-01 00:00:01' UTC to '2038-01-09 03:14:07'
UTC

TIME() A time. Format: HH:MM:SS
Note: The supported range is from '-838:59:59' to '838:59:59'

YEAR() A year in two-digit or four-digit format.
Note: Values allowed in four-digit format: 1901 to 2155. Values allowed in two-digit
format: 70 to 69, representing years from 1970 to 2069

*Even if DATETIME and TIMESTAMP return the same format, they work very differently. In an
INSERT or UPDATE query, the TIMESTAMP automatically set itself to the current date and time.

81

TIMESTAMP also accepts various formats, like YYYYMMDDHHMMSS, YYMMDDHHMMSS,
YYYYMMDD, or YYMMDD.

SQL Server Data Types

Character strings:

Data type Description Storage

char(n) Fixed-length character string. Maximum 8,000 characters n

varchar(n) Variable-length character string. Maximum 8,000 characters

varchar(max) Variable-length character string. Maximum 1,073,741,824 characters

text Variable-length character string. Maximum 2GB of text data

Unicode strings:

Data type Description Storage

nchar(n) Fixed-length Unicode data. Maximum 4,000 characters

nvarchar(n) Variable-length Unicode data. Maximum 4,000 characters

nvarchar(max) Variable-length Unicode data. Maximum 536,870,912 characters

ntext Variable-length Unicode data. Maximum 2GB of text data

Binary types:

Data type Description Storage

bit Allows 0, 1, or NULL

binary(n) Fixed-length binary data. Maximum 8,000 bytes

varbinary(n) Variable-length binary data. Maximum 8,000 bytes

varbinary(max) Variable-length binary data. Maximum 2GB

image Variable-length binary data. Maximum 2GB

Number types:

Data type Description Storage

tinyint Allows whole numbers from 0 to 255 1 byte

smallint Allows whole numbers between -32,768 and 32,767 2 bytes

82

int Allows whole numbers between -2,147,483,648 and 2,147,483,647 4 bytes

bigint Allows whole numbers between -9,223,372,036,854,775,808 and
9,223,372,036,854,775,807

8 bytes

decimal(p,s) Fixed precision and scale numbers.

Allows numbers from -10^38 +1 to 10^38 –1.

The p parameter indicates the maximum total number of digits that can be stored
(both to the left and to the right of the decimal point). p must be a value from 1 to
38. Default is 18.

The s parameter indicates the maximum number of digits stored to the right of the
decimal point. s must be a value from 0 to p. Default value is 0

5-17 bytes

numeric(p,s
)

Fixed precision and scale numbers.

Allows numbers from -10^38 +1 to 10^38 –1.

The p parameter indicates the maximum total number of digits that can be stored
(both to the left and to the right of the decimal point). p must be a value from 1 to
38. Default is 18.

The s parameter indicates the maximum number of digits stored to the right of the
decimal point. s must be a value from 0 to p. Default value is 0

5-17 bytes

smallmoney Monetary data from -214,748.3648 to 214,748.3647 4 bytes

money Monetary data from -922,337,203,685,477.5808 to 922,337,203,685,477.5807 8 bytes

float(n) Floating precision number data from -1.79E + 308 to 1.79E + 308.
The n parameter indicates whether the field should hold 4 or 8 bytes. float(24)
holds a 4-byte field and float(53) holds an 8-byte field. Default value of n is 53.

4 or 8
bytes

real Floating precision number data from -3.40E + 38 to 3.40E + 38 4 bytes

Date types:

Data type Description Storage

datetime From January 1, 1753 to December 31, 9999 with an accuracy of 3.33
milliseconds

8 bytes

datetime2 From January 1, 0001 to December 31, 9999 with an accuracy of 100
nanoseconds

6-8 bytes

smalldatetime From January 1, 1900 to June 6, 2079 with an accuracy of 1 minute 4 bytes

date Store a date only. From January 1, 0001 to December 31, 9999 3 bytes

time Store a time only to an accuracy of 100 nanoseconds 3-5 bytes

datetimeoffset The same as datetime2 with the addition of a time zone offset 8-10
bytes

timestamp Stores a unique number that gets updated every time a row gets created or

83

modified. The timestamp value is based upon an internal clock and does not
correspond to real time. Each table may have only one timestamp variable

Other data types:

Data type Description

sql_variant Stores up to 8,000 bytes of data of various data types, except text, ntext, and timestamp

uniqueidentifier Stores a globally unique identifier (GUID)

xml Stores XML formatted data. Maximum 2GB

cursor Stores a reference to a cursor used for database operations

table Stores a result-set for later processing

SQL FUNCTIONS

SQL has many built-in functions for performing calculations on data.

SQL Aggregate Functions

SQL aggregate functions return a single value, calculated from values in a column.

Useful aggregate functions:

 AVG() - Returns the average value
 COUNT() - Returns the number of rows

 FIRST() - Returns the first value

 LAST() - Returns the last value

 MAX() - Returns the largest value

 MIN() - Returns the smallest value

 SUM() - Returns the sum

SQL Scalar functions

SQL scalar functions return a single value, based on the input value.

Useful scalar functions:

 UCASE() - Converts a field to upper case
 LCASE() - Converts a field to lower case

84

 MID() - Extract characters from a text field

 LEN() - Returns the length of a text field

 ROUND() - Rounds a numeric field to the number of decimals specified

 NOW() - Returns the current system date and time

 FORMAT() - Formats how a field is to be displayed

The AVG() Function

The AVG() function returns the average value of a numeric column.

SQL AVG() Syntax
SELECT AVG(column_name) FROM table_name

SQL AVG() Example

We have the following "Orders" table:

O_Id OrderDate OrderPrice Customer

1 2008/11/12 1000 Hansen

2 2008/10/23 1600 Nilsen

3 2008/09/02 700 Hansen

4 2008/09/03 300 Hansen

5 2008/08/30 2000 Jensen

6 2008/10/04 100 Nilsen

Now we want to find the average value of the "OrderPrice" fields.

We use the following SQL statement:

SELECT AVG(OrderPrice) AS OrderAverage FROM Orders

The result-set will look like this:

85

OrderAverage

950

Now we want to find the customers that have an OrderPrice value higher than the average OrderPrice
value.

We use the following SQL statement:

SELECT Customer FROM Orders
WHERE OrderPrice>(SELECT AVG(OrderPrice) FROM Orders)

The result-set will look like this:

Customer

Hansen

Nilsen

Jensen

SQL COUNT

The COUNT() function returns the number of rows that matches a specified criteria.

SQL COUNT(column_name) Syntax

The COUNT(column_name) function returns the number of values (NULL values will not be counted) of
the specified column:

SELECT COUNT(column_name) FROM table_name

SQL COUNT(*) Syntax

The COUNT(*) function returns the number of records in a table:

SELECT COUNT(*) FROM table_name

SQL COUNT(DISTINCT column_name) Syntax

The COUNT(DISTINCT column_name) function returns the number of distinct values of the specified
column:

SELECT COUNT(DISTINCT column_name) FROM table_name

86

Note: COUNT(DISTINCT) works with ORACLE and Microsoft SQL Server, but not with Microsoft
Access.

SQL COUNT(column_name) Example

We have the following "Orders" table:

O_Id OrderDate OrderPrice Customer

1 2008/11/12 1000 Hansen

2 2008/10/23 1600 Nilsen

3 2008/09/02 700 Hansen

4 2008/09/03 300 Hansen

5 2008/08/30 2000 Jensen

6 2008/10/04 100 Nilsen

Now we want to count the number of orders from "Customer Nilsen".

We use the following SQL statement:

SELECT COUNT(Customer) AS CustomerNilsen FROM Orders
WHERE Customer='Nilsen'

The result of the SQL statement above will be 2, because the customer Nilsen has made 2 orders in total:

CustomerNilsen

2

SQL COUNT(*) Example

If we omit the WHERE clause, like this:

SELECT COUNT(*) AS NumberOfOrders FROM Orders

The result-set will look like this:

NumberOfOrders

87

6

which is the total number of rows in the table.

SQL COUNT(DISTINCT column_name) Example

Now we want to count the number of unique customers in the "Orders" table.

We use the following SQL statement:

SELECT COUNT(DISTINCT Customer) AS NumberOfCustomers FROM Orders

The result-set will look like this:

NumberOfCustomers

3

which is the number of unique customers (Hansen, Nilsen, and Jensen) in the "Orders" table.

The FIRST() Function

The FIRST() function returns the first value of the selected column.

SQL FIRST() Syntax
SELECT FIRST(column_name) FROM table_name

SQL FIRST() Example

We have the following "Orders" table:

O_Id OrderDate OrderPrice Customer

1 2008/11/12 1000 Hansen

2 2008/10/23 1600 Nilsen

3 2008/09/02 700 Hansen

4 2008/09/03 300 Hansen

5 2008/08/30 2000 Jensen

6 2008/10/04 100 Nilsen

88

Now we want to find the first value of the "OrderPrice" column.

We use the following SQL statement:

SELECT FIRST(OrderPrice) AS FirstOrderPrice FROM Orders

Tip: Workaround if FIRST() function is not supported:

SELECT OrderPrice FROM Orders ORDER BY O_Id LIMIT 1

The result-set will look like this:

FirstOrderPrice

1000

The LAST() Function

The LAST() function returns the last value of the selected column.

SQL LAST() Syntax
SELECT LAST(column_name) FROM table_name

SQL LAST() Example

We have the following "Orders" table:

O_Id OrderDate OrderPrice Customer

1 2008/11/12 1000 Hansen

2 2008/10/23 1600 Nilsen

3 2008/09/02 700 Hansen

4 2008/09/03 300 Hansen

5 2008/08/30 2000 Jensen

6 2008/10/04 100 Nilsen

89

Now we want to find the last value of the "OrderPrice" column.

We use the following SQL statement:

SELECT LAST(OrderPrice) AS LastOrderPrice FROM Orders

Tip: Workaround if LAST() function is not supported:

SELECT OrderPrice FROM Orders ORDER BY O_Id DESC LIMIT 1

The result-set will look like this:

LastOrderPrice

100

The MAX() Function

The MAX() function returns the largest value of the selected column.

SQL MAX() Syntax
SELECT MAX(column_name) FROM table_name

SQL MAX() Example

We have the following "Orders" table:

O_Id OrderDate OrderPrice Customer

1 2008/11/12 1000 Hansen

2 2008/10/23 1600 Nilsen

3 2008/09/02 700 Hansen

4 2008/09/03 300 Hansen

5 2008/08/30 2000 Jensen

6 2008/10/04 100 Nilsen

Now we want to find the largest value of the "OrderPrice" column.

We use the following SQL statement:

90

SELECT MAX(OrderPrice) AS LargestOrderPrice FROM Orders

The result-set will look like this:

LargestOrderPrice

2000

The MIN() Function

The MIN() function returns the smallest value of the selected column.

SQL MIN() Syntax
SELECT MIN(column_name) FROM table_name

SQL MIN() Example

We have the following "Orders" table:

O_Id OrderDate OrderPrice Customer

1 2008/11/12 1000 Hansen

2 2008/10/23 1600 Nilsen

3 2008/09/02 700 Hansen

4 2008/09/03 300 Hansen

5 2008/08/30 2000 Jensen

6 2008/10/04 100 Nilsen

Now we want to find the smallest value of the "OrderPrice" column.

We use the following SQL statement:

SELECT MIN(OrderPrice) AS SmallestOrderPrice FROM Orders

The result-set will look like this:

SmallestOrderPrice

100

91

The SUM() Function

The SUM() function returns the total sum of a numeric column.

SQL SUM() Syntax
SELECT SUM(column_name) FROM table_name

SQL SUM() Example

We have the following "Orders" table:

O_Id OrderDate OrderPrice Customer

1 2008/11/12 1000 Hansen

2 2008/10/23 1600 Nilsen

3 2008/09/02 700 Hansen

4 2008/09/03 300 Hansen

5 2008/08/30 2000 Jensen

6 2008/10/04 100 Nilsen

Now we want to find the sum of all "OrderPrice" fields".

We use the following SQL statement:

SELECT SUM(OrderPrice) AS OrderTotal FROM Orders

The result-set will look like this:

OrderTotal

5700

Aggregate functions often need an added GROUP BY statement.

The GROUP BY Statement

92

The GROUP BY statement is used in conjunction with the aggregate functions to group the result-set by
one or more columns.

SQL GROUP BY Syntax
SELECT column_name, aggregate_function(column_name)
FROM table_name
WHERE column_name operator value
GROUP BY column_name

SQL GROUP BY Example

We have the following "Orders" table:

O_Id OrderDate OrderPrice Customer

1 2008/11/12 1000 Hansen

2 2008/10/23 1600 Nilsen

3 2008/09/02 700 Hansen

4 2008/09/03 300 Hansen

5 2008/08/30 2000 Jensen

6 2008/10/04 100 Nilsen

Now we want to find the total sum (total order) of each customer.

We will have to use the GROUP BY statement to group the customers.

We use the following SQL statement:

SELECT Customer,SUM(OrderPrice) FROM Orders
GROUP BY Customer

The result-set will look like this:

Customer SUM(OrderPrice)

Hansen 2000

Nilsen 1700

Jensen 2000

93

Nice! Isn't it? :)

Let's see what happens if we omit the GROUP BY statement:

SELECT Customer,SUM(OrderPrice) FROM Orders

The result-set will look like this:

Customer SUM(OrderPrice)

Hansen 5700

Nilsen 5700

Hansen 5700

Hansen 5700

Jensen 5700

Nilsen 5700

The result-set above is not what we wanted.

Explanation of why the above SELECT statement cannot be used: The SELECT statement above has
two columns specified (Customer and SUM(OrderPrice). The "SUM(OrderPrice)" returns a single value
(that is the total sum of the "OrderPrice" column), while "Customer" returns 6 values (one value for each
row in the "Orders" table). This will therefore not give us the correct result. However, you have seen that
the GROUP BY statement solves this problem.

GROUP BY More Than One Column

We can also use the GROUP BY statement on more than one column, like this:

SELECT Customer,OrderDate,SUM(OrderPrice) FROM Orders
GROUP BY Customer,OrderDate

The UCASE() Function

The UCASE() function converts the value of a field to uppercase.

SQL UCASE() Syntax
SELECT UCASE(column_name) FROM table_name

Syntax for SQL Server
SELECT UPPER(column_name) FROM table_name

94

SQL UCASE() Example

We have the following "Persons" table:

P_Id LastName FirstName Address City

1 Hansen Ola Timoteivn 10 Sandnes

2 Svendson Tove Borgvn 23 Sandnes

3 Pettersen Kari Storgt 20 Stavanger

Now we want to select the content of the "LastName" and "FirstName" columns above, and convert the
"LastName" column to uppercase.

We use the following SELECT statement:

SELECT UCASE(LastName) as LastName,FirstName FROM Persons

The result-set will look like this:

LastName FirstName

HANSEN Ola

SVENDSON Tove

PETTERSEN Kari

The LCASE() Function

The LCASE() function converts the value of a field to lowercase.

SQL LCASE() Syntax
SELECT LCASE(column_name) FROM table_name

Syntax for SQL Server
SELECT LOWER(column_name) FROM table_name

SQL LCASE() Example

We have the following "Persons" table:

P_Id LastName FirstName Address City

95

1 Hansen Ola Timoteivn 10 Sandnes

2 Svendson Tove Borgvn 23 Sandnes

3 Pettersen Kari Storgt 20 Stavanger

Now we want to select the content of the "LastName" and "FirstName" columns above, and convert the
"LastName" column to lowercase.

We use the following SELECT statement:

SELECT LCASE(LastName) as LastName,FirstName FROM Persons

The result-set will look like this:

LastName FirstName

hansen Ola

svendson Tove

pettersen Kari

The MID() Function

The MID() function is used to extract characters from a text field.

SQL MID() Syntax
SELECT MID(column_name,start[,length]) FROM table_name

Parameter Description

column_nam
e

Required. The field to extract characters from

start Required. Specifies the starting position (starts at 1)

length Optional. The number of characters to return. If omitted, the MID() function returns the rest
of the text

96

SQL MID() Example

We have the following "Persons" table:

P_Id LastName FirstName Address City

1 Hansen Ola Timoteivn 10 Sandnes

2 Svendson Tove Borgvn 23 Sandnes

3 Pettersen Kari Storgt 20 Stavanger

Now we want to extract the first four characters of the "City" column above.

We use the following SELECT statement:

SELECT MID(City,1,4) as SmallCity FROM Persons

The result-set will look like this:

SmallCity

Sand

Sand

Stav

The LEN() Function

The LEN() function returns the length of the value in a text field.

SQL LEN() Syntax
SELECT LEN(column_name) FROM table_name

SQL LEN() Example

We have the following "Persons" table:

P_Id LastName FirstName Address City

1 Hansen Ola Timoteivn 10 Sandnes

97

2 Svendson Tove Borgvn 23 Sandnes

3 Pettersen Kari Storgt 20 Stavanger

Now we want to select the length of the values in the "Address" column above.

We use the following SELECT statement:

SELECT LEN(Address) as LengthOfAddress FROM Persons

The result-set will look like this:

LengthOfAddress

12

9

9

The ROUND() Function

The ROUND() function is used to round a numeric field to the number of decimals specified.

SQL ROUND() Syntax

SELECT ROUND(column_name,decimals) FROM table_name

Parameter Description

column_name Required. The field to round.

decimals Required. Specifies the number of decimals to be returned.

SQL ROUND() Example

98

We have the following "Products" table:

Prod_Id ProductName Unit UnitPrice

1 Jarlsberg 1000 g 10.45

2 Mascarpone 1000 g 32.56

3 Gorgonzola 1000 g 15.67

Now we want to display the product name and the price rounded to the nearest integer.

We use the following SELECT statement:

SELECT ProductName, ROUND(UnitPrice,0) as UnitPrice FROM Products

The result-set will look like this:

ProductName UnitPrice

Jarlsberg 10

Mascarpone 33

Gorgonzola 16

The NOW() Function

The NOW() function returns the current system date and time.

SQL NOW() Syntax
SELECT NOW() FROM table_name

SQL NOW() Example

We have the following "Products" table:

Prod_Id ProductName Unit UnitPrice

1 Jarlsberg 1000 g 10.45

2 Mascarpone 1000 g 32.56

3 Gorgonzola 1000 g 15.67

99

Now we want to display the products and prices per today's date.

We use the following SELECT statement:

SELECT ProductName, UnitPrice, Now() as PerDate FROM Products

The result-set will look like this:

ProductName UnitPrice PerDate

Jarlsberg 10.45 10/7/2008 11:25:02 AM

Mascarpone 32.56 10/7/2008 11:25:02 AM

Gorgonzola 15.67 10/7/2008 11:25:02 AM

The FORMAT() Function

The FORMAT() function is used to format how a field is to be displayed.

SQL FORMAT() Syntax
SELECT FORMAT(column_name,format) FROM table_name

Parameter Description

column_name Required. The field to be formatted.

format Required. Specifies the format.

SQL FORMAT() Example

We have the following "Products" table:

Prod_Id ProductName Unit UnitPrice

1 Jarlsberg 1000 g 10.45

2 Mascarpone 1000 g 32.56

3 Gorgonzola 1000 g 15.67

100

Now we want to display the products and prices per today's date (with today's date displayed in the
following format "YYYY-MM-DD").

We use the following SELECT statement:

SELECT ProductName, UnitPrice, FORMAT(Now(),'YYYY-MM-DD') as PerDate
FROM Products

The result-set will look like this:

ProductName UnitPrice PerDate

Jarlsberg 10.45 2008-10-07

Mascarpone 32.56 2008-10-07

Gorgonzola 15.67 2008-10-07

101

	The SQL SELECT Statement
	SQL SELECT Syntax

	An SQL SELECT Example
	SELECT * Example
	The SQL SELECT DISTINCT Statement
	SQL SELECT DISTINCT Syntax

	SELECT DISTINCT Example
	The WHERE Clause
	SQL WHERE Syntax

	WHERE Clause Example
	Quotes Around Text Fields
	Operators Allowed in the WHERE Clause
	The ORDER BY Keyword
	SQL ORDER BY Syntax

	ORDER BY Example
	ORDER BY DESC Example
	The INSERT INTO Statement
	SQL INSERT INTO Syntax

	SQL INSERT INTO Example
	Insert Data Only in Specified Columns
	The UPDATE Statement
	SQL UPDATE Syntax

	SQL UPDATE Example
	SQL UPDATE Warning
	SQL DELETE Syntax

	SQL DELETE Example
	Delete All Rows
	The TOP Clause
	SQL Server Syntax:

	SQL SELECT TOP Equivalent in MySQL and Oracle:
	MySQL Syntax:
	Example:
	Oracle Syntax
	Example

	SQL TOP PERCENT Example
	The LIKE Operator
	SQL LIKE Syntax:

	LIKE Operator Example
	The IN Operator
	SQL IN Syntax:

	IN Operator Example
	The BETWEEN Operator
	SQL BETWEEN Syntax:

	BETWEEN Operator Example
	Example 2
	SQL Alias
	SQL Alias Syntax for Tables:
	SQL Alias Syntax for Columns:

	Alias Example
	SQL INNER JOIN Keyword
	SQL INNER JOIN Syntax:

	SQL INNER JOIN Example
	SQL LEFT JOIN Keyword
	SQL LEFT JOIN Syntax:

	SQL LEFT JOIN Example
	SQL RIGHT JOIN Keyword
	SQL RIGHT JOIN Syntax:

	SQL RIGHT JOIN Example
	SQL FULL JOIN Keyword
	SQL FULL JOIN Syntax:

	SQL FULL JOIN Example
	The SQL UNION Operator
	SQL UNION Syntax:
	SQL UNION ALL Syntax:

	SQL UNION Example
	SQL UNION ALL Example
	The SQL SELECT INTO Statement
	SQL SELECT INTO Example
	SQL SELECT INTO - With a WHERE Clause
	SQL SELECT INTO - Joined Tables
	The CREATE DATABASE Statement
	SQL CREATE DATABASE Syntax:

	CREATE DATABASE Example
	The CREATE TABLE Statement
	SQL CREATE TABLE Syntax:

	CREATE TABLE Example
	Indexes
	SQL CREATE INDEX Syntax
	SQL CREATE UNIQUE INDEX Syntax

	CREATE INDEX Example
	The DROP INDEX Statement
	DROP INDEX Syntax for MS Access:
	DROP INDEX Syntax for MS SQL Server:
	DROP INDEX Syntax for DB2/Oracle:
	DROP INDEX Syntax for MySQL:

	The DROP TABLE Statement
	The DROP DATABASE Statement
	The TRUNCATE TABLE Statement
	The ALTER TABLE Statement
	SQL ALTER TABLE Syntax

	SQL ALTER TABLE Example
	Change Data Type Example
	DROP COLUMN Example
	SQL CREATE VIEW Statement
	SQL CREATE VIEW Syntax:

	SQL CREATE VIEW Examples
	SQL Updating a View
	SQL CREATE OR REPLACE VIEW Syntax:

	SQL Dropping a View
	SQL DROP VIEW Syntax:

	Definition and Usage
	Syntax
	Example
	Example

	Definition and Usage
	Syntax
	Example
	Example

	Definition and Usage
	Syntax
	Example

	Definition and Usage
	Syntax
	Example

	Definition and Usage
	Syntax
	Example

	Definition and Usage
	Syntax
	Example

	Definition and Usage
	Syntax
	Example

	Definition and Usage
	Syntax
	Example
	Example

	Definition and Usage
	Syntax
	Example

	Definition and Usage
	Syntax
	Example
	Example

	Definition and Usage
	Syntax
	Example

	Definition and Usage
	Syntax
	Example

	Definition and Usage
	Syntax
	Example
	Example

	Definition and Usage
	Syntax
	Example

	The AVG() Function
	SQL AVG() Syntax

	SQL AVG() Example
	SQL COUNT
	SQL COUNT(column_name) Syntax
	SQL COUNT(*) Syntax
	SQL COUNT(DISTINCT column_name) Syntax

	SQL COUNT(column_name) Example
	SQL COUNT(*) Example
	SQL COUNT(DISTINCT column_name) Example
	The FIRST() Function
	SQL FIRST() Syntax

	SQL FIRST() Example
	The LAST() Function
	SQL LAST() Syntax

	SQL LAST() Example
	The MAX() Function
	SQL MAX() Syntax

	SQL MAX() Example
	The MIN() Function
	SQL MIN() Syntax

	SQL MIN() Example
	The SUM() Function
	SQL SUM() Syntax

	SQL SUM() Example
	The GROUP BY Statement
	SQL GROUP BY Syntax

	SQL GROUP BY Example
	GROUP BY More Than One Column
	The UCASE() Function
	SQL UCASE() Syntax
	Syntax for SQL Server

	SQL UCASE() Example
	The LCASE() Function
	SQL LCASE() Syntax
	Syntax for SQL Server

	SQL LCASE() Example
	The MID() Function
	SQL MID() Syntax

	SQL MID() Example
	The LEN() Function
	SQL LEN() Syntax

	SQL LEN() Example
	The ROUND() Function
	SQL ROUND() Example
	The NOW() Function
	SQL NOW() Syntax

	SQL NOW() Example
	The FORMAT() Function
	SQL FORMAT() Syntax

	SQL FORMAT() Example

